rurs=-m

A General-Purpose MATLAB Software for
Solving Multiple-Phase Optimal Control Problems

Version 2.3

Michael A. Patterson, Ph.D.
Anil V. Rao, Ph.D.

December 2016

Copyright (©) 2013-2016 Michael A. Patterson and Anil V. Rao. All Rights Reserved.



Preface

This document serves a user’s guide for Version 2.0 of the MATLAB optimal control software GPOPS — II:
a general-pupose software for solving optimal control problems using variable-order adaptive orthogonal
collocation methods together with sparse nonlinear programming. The class of problems that GPOPS — II
can solve is very broad and include applications in engineering, economics, and medicine. GPOPS — II
uses some of the latest advancements in the area of orthogonal collocation methods along with the state-
of-the-art in nonlinear optimization. Specifically, GPOPS — Il employs a variable-order adaptive Legendre-
Gauss-Radau quadrature collocation method. GPOPS — II has been designed to work with the nonlinear
programming (NLP) solvers SNOPT and IPOPT, and MATLAB mex files for IPOPT are included with the
software (users must obtain SNOPT on their own, but the complete interface for using SNOPT is included
with GPOPS — II. The software has been designed to be extremely flexible, allowing a user to formulate an
optimal control problem in a way that makes sense for the problem being solved. Few, if any, restrictions
have been placed on the manner in which a problem needs to be modeled. As stated, the software is
general-purpose, that is, it has not been developed for any specific type of problem. While the developers of
GPOPS — I make no guarantee as to the fitness of the software for any particular purpose, it is certainly
hoped that software is useful for a variety of applications.

The new version of GPOPS — II described in this user’s guide differs from the first release of May 2013
in the follows ways. First, some of the input syntax has been modified to be more elegant than it was
previously. Second, the software now includes a complete input checker that provides errors and warnings
regarding user-defined inputs. Third, from an algorithmic standpoint the major change is the way in which
NLP solver derivatives can now be obtained. In addition to the original sparse finite-differencing method
(which is still included), the user now has the choice of generating derivative source code using the open-
source automatic differentiation software ADiGator" (written by Matthew J. Weinstein and available at
http://sourceforge.net/projects/adigator) or by providing user-supplied (analytic) derivatives. These
improvements have been made to increase both computational efficiency and reliability of the software.

Acknowledgments

The authors of GPOPS — III have many people to thank along the way for their contributions to the research
that has made GPOPS — II possible. While it is impossible to acknowledge everyone who has contributed to
the development of the underlying methods that are implemented in GPOPS — II, here is a partial (hopefully
complete) list of people and their contributions:

e Dr. Divya Garg: mathematical theory showing the equivalence between the differential and integral
forms of the methods along with the development of the transformed adjoint systems as described in
Refs. 2, 3, and

e Dr. Christopher L. Darby: hp adaptive mesh refinement methods as described in Refs. 5 and
e Dr. Camila Francolin: costate estimation as described in Ref.

e Matthew Weinstein: development of the open-source automatic differentiation package ADiGator as
found at http://www.sourceforge.net/projects/adigator and described in Ref.

e Fengjin Liu: development of the hp adaptive mesh refinement methods as described in Refs. 8 and

e Professor William W. Hager: for the honor of being able to collaborate over the past several years with
one of the world’s most distinguished applied mathematicians on our optimal control research and for
his contributions to all of the aforementioned hp adaptive mesh refinement methods as described in
Refs. 5,0,8-

Disclaimer

The contents of this document and the corresponding software GPOPS — II are provided “as is” without any
merchantability or fitness for any particular application. In particular,
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e You get no warranties of any kind;

e If the software damages you in any way, you may only recover direct damages up to the amount you
paid for it (that is, you get zero if you did not pay anything for the software);

e You may not recover any other damages, including those called ”consequential damages.” (The state
or country where you live may not allow you to limit your liability in this way, so this may not apply
to you).

Neither authors nor their employers (past, present, or future) assume any responsibility whatsoever from
any harm resulting from the software.

GPOPS — 1T is provided “as is” without warranty of any kind, expressed or implies, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and non-infringement. In no
event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in
an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use
or dealings in the software.

Licensing Agreement

By downloading, using, modifying, or distributing GPOPS2, you agree to the terms of the license agreement as
stated on the website http://www.gpops2.com/License/License.html. Please read the license terms
and conditions carefully before proceeding to download, install, or use GPOPS — Il

Installation Instructions

GPOPS — I can be installed using any version of MATLAB after R2011a on any computer that runs Mi-
crosoft Windows 32-bit and 64-bit, Linux 64-bit, or Mac OS-X 64-bit. The installation instructions are as
follows:

(1) Unzip the zip archive from the download link that was supplied when you registered or purchased
GPOPS — II. Once the file is unzipped, place the license file you received in the directory $GPOPS2/license
(where $GPOPS2 is the root directory where GPOPS — II was unzipped).

(2) Start MATLAB, change to the directory $GPOPS2, and execute the file “gpopsMatlabPathSetup.m”
from the MATLAB command prompt. The execution of “gpopsMatlabPathSetup.m” will attempt to
write to the master path definition file “pathdef.m”. If “pathdef.m” cannot be written to (for example,
if you are not the administrator of the computer or if you otherwise do not have permission to write
to “pathdef.m”), then the GPOPS — Il directories will not be saved when MATLAB is closed. If the
MATLAB path cannot be saved and you want to include the GPOPS — II directories each time MATLAB
starts, you will need to add the GPOPS — II paths using the “addpath” command in a “startup.m” file
and place the “startup.m” file in your MATLAB home working directory.

For completeness, if you do not have permission to write to the “pathdef.m” file, then the following addpath
commands should be included in the “startup.m” file so that you have a functioning GPOPS — II installation
each time MATLAB is started:

addpath ('$GPOPS2/1license');

addpath ('SGPOPS2/nlp/ipopt');

addpath ('SGPOPS2/gpopsUtilities’');

addpath ('$GPOPS2/1ib/gpopsCommon') ;

addpath ('$SGPOPS2/1ib/gpopsMeshRefinement ') ;

addpath ('$GPOPS2/1ib/gpopsAutomaticScaling');

addpath ('$GPOPS2/1ib/gpopsADiGator');

addpath ('$SGPOPS2/1ib/gpopsFiniteDifference');

addpath ('$SGPOPS2/1ib/gpopsRPMDifferentiation');

addpath ('$GPOPS2/1ib/gpopsRPMDifferentiation/gpopsIpoptRPMD') ;
addpath ('$SGPOPS2/1ib/gpopsRPMDifferentiation/gpopsSnoptRPMD') ;
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addpath ('$GPOPS2/1ib/gpopsRPMIntegration') ;
addpath ('$GPOPS2/1ib/gpopsRPMIntegration/gpopsIpoptRPMI") ;
addpath ('$GPOPS2/1ib/gpopsRPMIntegration/gpopsSnoptRPMI') ;

Finally, it is noted that the following information is displayed upon execution of “gpops2License”:

GPOPS-II License Information

License Owner : Academic Institution, Not-for-Profit Corporation, or Commercial Institution
License Type : Academic, Not-for-Profit, or Commercial
License Class : Single-User, Department-Wide, or Institution-Wide

License Expiration Date [year, month, day] : [Expiration-Year, Expiration-Month, Expiration-Day]
License Valid For The Following MATLAB license(s) : List-of-Valid-MATLAB-License-Numbers

The above installation instructions do not include the installation of the open-source automatic differentiation
software ADiGator." If you would like to use ADiGator with GPOPS — TI, please visit the A DiGator website

http://sourceforge.net/projects/adigator and follow the setup instructions included with ADiGator.
If you have any questions about installing GPOPS — II, please send an e-mail to support@gpops2. com.
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1 Introduction to the General-Purpose Software GPOPS — II

A P-phase optimal control problem can be stated in the following general form. Determine the state,
y®(t) € R”(yp), control, u® (t) e Rnglp), initial time, t(()p) € R, final time, tgcp) € R, integrals, q'») e R”fzp)7 in
each phase p € [1,..., P|, and the static parameters, s € R™= that minimize the cost functional

J:d) y(l)(t(()l))v'"7y(P)(t(()P))vtE)1)»“'at(gp)ay(l)(tgfl))v'"7y(P)(t§fP))7t§£1)w~'at§fp),q(1)7~",q(P)vs] (1)

subject to the dynamic constraints

y?) = a® [y(p)7 u(p),t(p),s] , (p=1,...,P), (2)
the event constraints
br(ri?n S b |:y<l>(t(()1))7 e 7y(P) (tép))a t(()l)v o 77581))7 y(1>(t5‘1))7 e 7y<P>(t5‘P))7t(f1)7 R t}P)vq(l)v e 7q<P>»S] S bl("giz)(?
(g=1,...,@),
(3)
the inequality path constraints
Cgi)n Sc(p) |:y(l7)7u(p)’t(l7)7si| S cg:guxa (p: 17"'7p)7 (4)
and the integral constraints
amn <a? <qll, (p=1....P) (5)
where
t(fp)
qu):/() Qi {y(p),u(p),t(p),s dt? (Z:L,Tlgp),p:l,,P) (6)
t?

While much of the time a user may want to solve a problem consisting of multiple phases, it is important
to note that the phases need not be sequential. To the contrary, any two phases may be linked provided
that the independent variable does not change direction (i.e., the independent variable moves in the same
direction during each phase that is linked).

1.1 Radau Orthogonal Collocation Method Employed by GPOPS — Il

The method employed by GPOPS — Il is an hp-adaptive version of the Legendre-Gauss-Radau (LGR) or-
thogonal collocation method. The LGR orthogonal collocation method is a Gaussian quadrature implicit
integration method where collocation is performed at LGR points. points. The theory behind the colloca-
tion method used in GPOPS — II can be found Refs. 2, 3, 4, and

1.2 Organization of GPOPS — II

GPOPS — 1T is organized as follows. In order to specify the optimal control problem that is to be solved, the
user must write the following MATLAB functions: (1) an endpoint function; and (2) a continuous function.
The endpoint function defines how the the start and/or terminus in any of the phases in the problem, the
integrals in any phase of the problem and the static parameters are related to one another. The endpoint
function also defines the cost to be minimized. The continuous function defines the evolution of the dynamics
in any phase of the problem, the integrands that are required to compute any integrals in any phase of the
problem, and any path constraints in any phase of the problem. Next, the user must specify the lower and
upper limits on the following quantities:

(1) the time at the start and terminus of a phase;
(2) the state at the start of a phase, during a phase, and at the terminus of a phase;

(3) the control during a phase;
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(4) the path constraints
(5) the event constraints;
(6) the static parameters.

The remainder of this document is devoted to describing in detail the MATLAB syntax for describing the
optimal control problem and each of the constituent functions.

1.3 Color Highlighting Throughout Document

The following notation is adopted for use throughout the remainder of this document. First, all user-specified
names will be denoted by red slanted characters. Second, any item denoted by blue boldface characters
are pre-defined and cannot be changed by the user. Users who do not have color rendering capability will
see only slanted and boldface characters, respectively.

2 Constructing an Optimal Control Problem Using GPOPS — II

We now proceed to describe the constructs required to specify an optimal control problem in GPOPS — II.
We note that the key MATLAB programming elements used in constructing an optimal control problem in
GPOPS — 1T are structure and arrays of structures. In this Section we provide the details of constructing a
problem using GPOPS — II. First, the call to GPOPS — II s given as

output=gpops2(input),

where input is a user-defined structure that contains all of the information about the optimal control problem
to be solved and output is a structure that contains the information obtained by solving the optimal control
problem. In this section we describe the contents of the structures input and output.

2.1 Syntax for Input Structure setup

The user-defined structure setup contains required fields and optional fields. The required fields in the
structure input are as follows:

e name: a string with no blank spaces that contains the name of the problem:;

e functions: a structure that contains the name of the continuous function and the endpoint function
(see Section 2.2 for further details);

e bounds: an structure that contains the information about the lower and upper bounds on the different
variables and constraints in the problem (see Section 2.3 for further details);

e guess: an structure that contains a guess of the time, state, control, integrals, and static parameters
in the problem (see Section 5.3 for further details);

In addition to the above required fields in the structure setup, optional fields in the setup structure may be
specified (these fields may be provided by the user if it may of benefit for a particular problem of interest).
The optional fields in the structure setup are given as follows along with the list of possible values and the
default values:

e auxdata: a structure containing auxiliary data that may be used by different functions in the problem.
Including auxdata eliminates any need to specify global variables for use in the problem. The following
table provided the possible values and their defaults for the field setup.auxdata:

Field Possible Values Default
setup.auxdata | Any Problem-Specific Data | Not Provided
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e derivatives: a structure that specifies the derivative approximation to be used by the NLP solver and
the derivative order ("first’ or ’second’) to be used by the NLP solver. The field setup.derivatives con-
tains three fields supplier, derivativelevel, and dependencies where the field setup.derivatives.supplier
contains the type of derivative approximation , the field setup.derivatives.derivativelevel contains
the derivative order, while the field setup.derivatives.dependencies determines how the depen-
dencies are found. The following table provided the possible values and their defaults for the field
setup.derivatives:

Field Possible Values Default
setup.derivatives.supplier ‘sparseFD’ or ’sparseBD’ or ’sparseCD’ or ’adigator’ | ’sparseFD’
setup.derivatives.derivativelevel 'first’ or ’second’ first’
setup.derivatives.dependencies 'full’, 'sparse’ or 'sparseNaN’ ‘sparseNaN’

Note that the option setup.derivatives.supplier is ignored when the derivative option is set to either
‘analytic’ or ’adigator’.

e scales: a structure that specifies how the problem to be solved is scaled. The field scales itself contains
a field method that can be set to one of the following:

Field Possible Values Default
‘none’ or ’automatic-bounds’
setup.scales.method or ’automatic-bounds’ or ’automatic-guess’ ‘none’

’automatic-guessUpdate’ or "automatic-hybrid’
or "automatic-hybridUpdate’ or ’defined’

The option ’automatic-bounds’ scales the problem from the user-supplied bounds on the variables. The
option 'automatic-guess’ scales the problem once using the initial guess of the solution supplied by the
user. The option ’automatic-guessUpdate’ scales the problem from the initial guess on the first mesh
and from the solution obtained on every subsequent mesh during the mesh refinement. The option
’automatic-hybrid’ scales the problem from the user supplied bounds on the variables on the first mesh
and from the solution obtained on the initial mesh for every subsequent mesh in the mesh refinement.
The option ’automatic-hybridUpdate’ scales the problem from the bounds on the initial mesh and from
the solution obtained on every subsequent mesh during the mesh refinement. It is noted that the field
scales.method is changed to ’defined” when using any scaling method where the scales are not changed
between every mesh iteration (in other words, when using ’automatic-bounds’, ’automatic-guess’, or
"automatic-hybrid’). Finally, other fields in the structure setup.scales are created during an execution
of GPOPS — II but the user need not in general be concerned with these additional fields. If a user
desires an explanation of these other fields that are created, please contact the authors.

e method: a string that defines the version of the collocation to be used when solving the problem.
Valid options are

Field Possible Values Default
setup.method | 'TRPM-Differentiation’ or 'RPM-Integration’ | 'RPM-Differentiation’

e mesh: a structure that specifies the information as to the type of mesh refinement method to be used
and the mesh refinement accuracy tolerance, as well as the initial mesh. The structure setup.mesh
contains the fields method, tolerance, maxiterations, colpointsmin, colpointsmax, splitmult,
curveratio, R, sigma, and phase. The field setup.mesh.method is a string that specified the par-
ticular mesh refinement method to be used. The field setup.mesh.tolerance contains the desired ac-
curacy tolerance of the mesh. The field setup.mesh.maxiterations contains the maximum number of
allowed mes iterations. The fields setup.mesh.colpointsmin and setup.mesh.colpointsmax are in-
tegers (both greater than two and such that colpointsmax is greater colpointsmin) that specifies the
minimum and maximum allowable number of collocation points, respectively, in a mesh interval. The
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fields setup.mesh.curveratio and setup.mesh.splitmult are used with the method “hp-DarbyRao”
only (see below) and are defined as follows. First, setup.mesh.curveratio provide a threshold for
the maximum-to-average curvature ratio of the solution in a mesh interval to determine whether to
increase the polynomial degree within a mesh interval or create new mesh intervals. Second, the field
setup.mesh.curveratio provides a scale factor that determines the number of mesh intervals to create
when dividing a mesh interval into subintervals. The field setup.mesh.R is used with the method
“hp-LiuRao” only (see below) and provides a derivative ratio that determines whether to increase the
polynomial degree within a mesh interval or to create new mesh intervals based on the maximum-to-
average value of the derivative of the solution in a mesh interval. Finally, the field setup.mesh.sigma
is used with the method “hp-LiuRao-Legendre” (see below) and determines whether to increase the
polynomial degree within a mesh interval or to create new mesh intervals based on the decay rate of a
Legendre polynomial coefficient expansion of the solution in a mesh interval. All of these parameters
are described in Refs. 5,0,8 and (the appropriate reference being that which corresponds to the
method being used).

Field Possible Values Default
setup.mesh.method "hp-PattersonRao’” or "hp-DarbyRao’ "hp-PattersonRao’
or 'hp-LiuRao’ or 'hp-LiuRao-Legendre’
setup.mesh.tolerance Positive Number Between 0 and 1 1073
setup.mesh.maxiterations Non-Negative Integer 10
setup.mesh.colpointsmin Integer > 2 3
setup.mesh.colpointsmax Integer > colpointsmin 10
setup.mesh.splitmult Real Number > 1 1.2
setup.mesh.curveratio Real Number > 1 2
setup.mesh.R Real Number > 1 1.2
setup.mesh.sigma Real Number > 0 0.5

The field mesh.phase specifies the initial mesh intervals in a given phase and the number of col-
location (Radau) points in each mesh interval. The field setup.mesh.phase(p).fraction contains
the mesh intervals for each phase p = 1,..., P, where the mesh intervals are specified in a row
vector that provides the fraction of a scaled interval [0,1] that corresponds to each mesh interval.
The field setup.mesh.phase(p).colpoints contains the number of collocation points in each phase
p=1,..., P, where the number of collocation points in each mesh interval is also specified as a row
vector such that the i" entry in setup.mesh.phase(p).colpoints corresponds to the i'* entry in

setup.mesh.phase(p).fraction.

Field Possible Values Default

setup.mesh.phase(p).fraction

Row Vector of Length M > 1 of Positive
Numbers > 0 and < 1 that Sum to Unity

Row Vector of Length M > 1

setup.mesh.phase(p).colpoints of Positive Integers > 1 and < 10 4*ones(1,10)

(M is the same as in setup.mesh.phase(p).fraction)

e nlp: a structure that specifies the NLP solver to be used and the options to be used within the chosen

NLP solver. setup.nlp contains the field solver and options. The field solver contains a string
indicating the NLP solver to be used. The fields ipoptoptions and snoptoptions are structures that
themselves contains fields with options for the NLP solvers IPOPT and SNOPT, respectively, which
can be set from GPOPS — II.

Field Possible Values | Default
setup.nlp.solver | ’snopt’ or ’ipopt’ ipopt’

Field nlp.ipoptoptions for the NLP solver IPOPT:

0.1*ones(1,10)
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Field Possible Values Default
setup.nlp.ipoptoptions.linear_solver ‘mumps’ or 'mab7’ ‘mumps’
setup.nlp.ipoptoptions.tolerance Positive Real Number 107

setup.nlp.ipoptoptions.maxiterations Positive Integer 2000

Field nlp.snoptoptions for the NLP solver SNOPT:

setup.nlp.snoptoptions.tolerance Positive Real Number | 1076
setup.nlp.snoptoptions.maxiterations Positive Integer 2000

e displaylevel: a integer that takes on the values 0, 1, or 2 and provides the amount of output that
is sent to the MATLAB command window during an execution of GPOPS — IlI. The following table
provided the possible values and their defaults for the field setup.auxdata:

Field Possible Values | Default
setup.displaylevel 0,1,0r2 2

A display level of zero suppresses all output. A display level of one provides only mesh refinement
output. Finally, a display level of two provides both NLP solver iteration output and mesh refinement
output.

It is important to note that GPOPS — I has been designed so that the independent variable must be
monotonically increasing in each phase of the problem.
2.2 Syntax for Structure setup.functions

The syntax for specifying the names of the MATLAB functions given in setup.functions given as follows:

setup.functions.continuous = Q@continuousfun.m
setup.functions.endpoint = @endpointfun.m

The details of the syntax for each function are provided in Sections 2.4 and 2.5.

2.3 Syntax for bounds Structure

Once the user-defined structure input has been defined, the next step in setting up a problem for use with
GPOPS — 1T is to create the structure input.bounds. The structure bounds contains the following three
fields: phase, parameters, and eventgroup. The field input.bounds.phase is an array of structures of
length P (where P is the number of phases) that specifies the bounds on the time, state, control, path con-
straints, and integrals in each phase p =1,..., P of the problem. The field input.bounds.parameters con-
tains the lower and upper bounds on the static parameters in the problem. The field input.bounds.eventgroup
is an array of structures of length G, where G is the number of event groups in the problem. The p** element
in the array of structures input.bounds.phase contains the following fields:

e bounds.phase(p).initialtime.lower and bounds.phase(p).initialtime.upper: scalars that con-
tain the information about the lower and upper bounds on the initial time in phase p € [1,..., P]. The
scalars bounds.phase(p).initialtime.lower and bounds.phase(p).initialtime.upper have the fol-
lowing form:

bounds.phase(p).initialtime.lower = tioWVer
bounds.phase(p).initialtime.upper = ¢;**"

e bounds.phase(p).finaltime.lower and bounds(p).finaltime.upper: scalars that contain the in-
formation about the lower and upper bounds on the final time in phase p € [1,...,P]. The scalars
bounds.phase(p).finaltime.lower and bounds.phase(p).finaltime.upper have the following form:

bounds.phase(p).finaltime.lower = tlPwer
bounds.phase(p).finaltime.upper = t;pper
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bounds.phase(p).initialstate.lower and bounds.phase(p).initialstate.upper: row vectors of length

n(yp ) that contain the lower and upper bounds on the initial state in phase p € [1, ..., P]. The row vectors

bounds.phase(p).initialstate.lower and bounds.phase(p).initialstate.upper have the following
form:

bounds.phase(p).initialstate.lower = YL YV

s O,ng,p)
o e upper  upper
bounds.phase(p).initialstate.upper = Yo,1 yo,n?(f’)

bounds.phase(p).state.lower and bounds.phase(p).state.upper: row vectors of length n(yp) that
contain the lower and upper bounds on the state during phase p € [1,...,P]. The row vectors
bounds.phase(p).state.lower and bounds.phase(p).state.upper have the following form:

bounds.phase(p).state.lower = yver yif(jlfr
bounds.phase(p).state.upper = Y y:g{ger}

bounds.phase(p).finalstate.lower and bounds.phase(p).finalstate.upper: row vectors of length
n;p ) that contain the lower and upper bounds on the final state in phase p € [1,..., P]. The row vec-
tors bounds.phase(p).finalstate.lower and bounds.phase(p).finalstate.upper have the following
form:

bounds.phase(p).finalstate.lower = y}?‘{mr y?‘:%
Yy

bounds.phase(p).finalstate.upper = ?J}lﬁper ;pnpg
Y

bounds.phase(p).control.lower and bounds.phase(p).control.upper: row vectors of length nl(,p)

that contain the lower and upper bounds on the control during phase p € [1,..., P]. The row vectors
bounds.phase(p).control.lower and bounds.phase(p).control.upper have the following form:

bounds.phase(p).control.lower = upver “Rﬁ?r]
bounds.phase(p).control.upper = uyPPet Uzlff)er}

bounds.phase(p).path.lower and bounds.phase(p).path.upper: row vectors of length n? that
contain the lower and upper bounds on the path constraints during phase p € [1,..., P]. The row
vectors bounds.phase(p).path.lower and bounds.phase(p).path.upper have the following form:

bounds.phase(p).path.lower = cever - Cfgz?r
bounds.phase(p).path.upper = Pt szg))er}

bounds.phase(p).integral.lower and bounds.phase(p).integral.upper: row vectors of length nff’ )

that contain the lower and upper bounds on the integrals in phase p € [1,..., P]. The row vectors
bounds.phase(p).integral.lower and bounds.phase(p).integral.upper have the following form:

bounds.phase(p).integral.lower = e ‘Jf((lv:;ar
bounds.phase(p).integral.upper = IR q:?))er]

bounds.phase(p).duration.lower and bounds.phase(p).duration.upper: scalars that contain
the lower and upper bounds on the duration of a phases p € [1,..., P]. The duration is the difference

between the final time of the phase and the initial time of the phase, t(fp ) t(()p ),

bounds.parameter.lower and bounds.parameter.upper: row vectors of length n, that contain the

lower and upper bounds on the static parameters in the problem. The row vectors bounds.parameters.lower

and bounds.parameters.upper have the following form:

bounds.parameter.lower = glower . slower]

Ng
— upper | upper
bounds.parameter.upper = S1 Sns ]
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e bounds.eventgroup(g).lower and bounds.eventgroup(g).upper: row vectors of length nl()g) that
contain the lower and upper bounds on the group g = 1,...,G of event constraints. The row vectors
bounds.eventgroup(g).lower and bounds.eventgroup(g).upper have the following form:

bounds.eventgroup(g).lower = v - bifg";’fr
bounds.eventgroup(g).upper = byt b:EgI;er}

Note: any fields that do not apply to a problem (for example, a problem with no path constraints) should
be omitted completely.

2.4 Syntax of Endpoint Function setup.functions.endpoint

The syntax used to evaluate the user-defined endpoint function defined by the function handle setup.functions.endpoint
is given as follows:

function output=endpointfun(input)

The input input is a structure that contains the fields phase, auxdata, and parameter if the problem has
parameters. The field input.phase is an array of structures of length P (where P is the number of phases)
such that the p*" element of input.phase contains the following fields:

e input.phase(p).initialtime: a scalar that contains the initial time in phase p =1,..., P;

e input.phase(p).finaltime: a scalar that contains the final time in phase p=1,..., P;

e input.phase(p).initialstate: a row vector of length ny(f ) that contains the initial state in phase p =

1,...,P;

e input.phase(p).finalstate: a row vector of length nz(,p ) that contains the final state in phase p =

1,...,P;

(p)
d

e input.phase(p).integral: a row vector of length n;’ that contains the integrals in phasep =1,..., P;

e input.parameter: a row vector of length n, that contains the static parameters in phase p =1,..., P;

The field input.auxdata contains the same information as the field input.auxdata that was specified in
the structure input that was used to specify the information for the entire problem. The output output
is a structure that contains the fields objective and eventgroup. The fields output.objective and out-
put.eventgroup are given as follows:

e output.objective: a scalar that contains the result of computing the objective function on the current
call to input.functions.endpoint;

e output.eventgroup: an array of structures of length G (where G is the number of event groups)

such that the ¢'" element in output.eventgroup is a row vector of length nlgg) that contains the
result of evaluating ¢'" group of event constraints at the values given in the call to the function
input.functions.endpoint;

2.5 Syntax for Continuous Function setup.functions.continuous

The syntax used to evaluate the continuous functions defined by the function handle setup.functions.continuous
is given as follows:

function output=continuousfun(input)

The input input is a structure that contains the fields phase and auxdata. The field input.phase is an
array of structures of length P (where P is the number of phases) such that the p'" element of input.phase
contains the following fields:
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e input.phase(p).time: a column vector of length N®), where N(P) is the number of collocation points
in phase p=1,..., P.

e input.phase(p).state: a matrix of size N® x ng(f), where N®) and ng(,p) are, respectively, the number
of collocation points and the dimension of the state in phase p=1,..., P;

e input.phase(p).control: a matrix of size N () x n&p ), where N®) and n&p ) are, respectively, the number

of collocation points and the dimension of the control in phase p=1,..., P;

e input.phase(p).parameter: a matrix of size N®) x n, where N®) is the number of collocation points
in phase p = 1,..., P and and ny is the dimension of the static parameter. [Note: see below for the
reason why the static parameter has a size N®) x ngl;

Finally, output is an array of structures of length P (where P is the number of phases) such that the p‘*
element of output contains the following fields:

e output.dynamics: a matrix of size N®) x ng(,p ), where N®) and ng(,p ) are, respectively, the number of

collocation points and the dimension of the state in phase p=1,..., P;

e output.path: a matrix of size N® x n{”, where N® and n'” are, respectively, the number of

collocation points and the number of path constraints in phase p =1,..., P;

e output.integrand: a matrix of size N®) x n((ip), where N®) and nfip) are, respectively, the number of
collocation points and the number of integrals in phase p=1,..., P;

IMPORTANT NOTE: While it may seem a bit odd, the field input.phase(p).parameter is actually
specified as if it were phase-dependent while it actually does not depend upon the phase because the static
parameters themselves are independent of the phase. Furthermore, while the static parameters are defined
as a single row vector, the arrays input.phase(p).parameter are actually matrices of size N ) % ng, where
N®) is the number of collocation points in each phase. The reason for making the static parameters phase
dependent and providing them as an array with N®) rows is to improve the efficiency with which the NLP
derivatives are computed.

2.6 Specifying an Initial Guess of The Solution

The field guess of the user-defined structure setup contains the initial guess for the problem. The field guess
is a then structure that contains the fields phase and parameter. Assume that M () is the number of values
used in the guess for the time, state, and control in phase p = 1,..., P. The field setup.guess.phase is an
array of structures of length P such that the p* element of setup.guess.phase contains the following fields:

e setup.guess.phase(p).time: a column vector of length M®) in phase p=1,...,P;

e setup.guess.phase(p).state: a matrix of size M®) x n;p), where ng,p) is the dimension of the state in

phasep=1,..., P;

e sctup.guess.phase(p).control: a matrix of size M) x nq(lp), where nq(f) is the dimension of the control
in phase p=1,..., P;

e setup.guess.phase(p).integral: a row vector of length nfip ), where ngp )
phasep=1,..., P;

is the number of integrals in

e setup.guess.parameter: a row vector of length size ng, where ng is the number of static parameters
in the problem.

It is noted that the column vector of time points specified in each phase p = 1,..., P in the field setup.guess.phase(p).time
must be monotonically increasing.
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2.7 Use of ADiGator"' to Generate NLP Solver Derivatives

As stated earlier, one of the options for generating derivatives required by the NLP solver is to use the open-
source automatic MATLAB differentiation software ADiGator." The software ADiGatoris described in detail
in Ref. 1 and can be found at http://sourceforge.net/projects/adigator. The option for using ADiGa-
toris invoked by setting setup.derivatives.method = ’adigator’. Assuming the user has obtained A DiGator
from http://sourceforge.net/projects/adigator and the option setup.derivatives.method has been
set to ’adigator], the first and/or second derivative functions (depending upon which NLP solver is being used
an which derivative level is chosen) of the user-supplied optimal control functions setup.functions.continuous
setup.functions.endpoint are obtained simply by executing GPOPS — IT on the user setup. At the start of
the GPOPS — II run, screen output will be displayed that provides a status of the derivative file generation.
After generating the derivative files, GPOPS — II will run in the usual mode, this time using the derivative
code generated by ADiGator instead of using the default sparse finite-difference method.

An important aspect of using ADiGator is that the user may only want to generate derivative code once
and then re-use the derivative functions in future runs of GPOPS — II. In order to avoid regeneration of the
user continuous and endpoint functions, it is necessary that the user provide these derivative function
names in the setup structure that will be used in the future execution of GPOPS — II. First, let myproblem be
the prefix for the continuous and endpoint function names (that is, the continuous and endpoint functions
are m-files named myproblemContinuous and myproblemEndpoint). The first derivative functions are
then m-files named myproblemContinuousADiGatorGrd and myproblemEndpointADiGatorGrd.m
while the second derivative functions are m-files named myproblemContinuousADiGatorHes and myprob-
lemEndpoint ADiGatorHes. Corresponding to the first and second derivative function names created by
ADiGator, the following fields must be added to the setup structure used in a future run of GPOPS — II:

e setup.adigatorgrd.continuous = @QmyproblemContinuousADiGatorGrd
e setup.adigatorgrd.endpoint = @QmyproblemEndpoint ADiGatorGrd
e setup.adigatorhes.continuous = @myproblemContinuousADiGatorHes
e setup.adigatorhes.endpoint = @QmyproblemEndpoint ADiGatorHes

Finally, a few important points should be noted when using A DiGator with GPOPS — Il. The first important
point pertains to when the derivative files are regenerated. Specifically, it is recommended to regenerate the
derivative files if the user has any doubt as to whether any changes have been made to anything in the
problem setup or the associated function files. For example, if the user continuous or endpoint function
depends upon another function and the user has made changes in the dependent function (but not in the
actual user functions themselves), then it will be necessary to regenerate the derivative functions using
ADiGator. The easiest way to know that the correct derivative files are used in subsequent executions of
GPOPS — 1T is to delete any or all of the files created by ADiGator before executing GPOPS — II using the
derivative option setup.derivatives.method = ’adigator’.

A second important point regarding ADiGator pertains to the situation when GPOPS — II is unable
to generate derivative files. As with any automatic differentiation software, ADiGator has limitations on
function code that can be differentiated. If a GPOPS — II user function cannot be differentiated by A DiGator,
GPOPS — 1T will produce the following generic error:

GPOPS-II ERROR: ADiGator could not produce derivative files

Note that the above error does not provide the reason why ADiGator cannot produce derivative files. In
order for the user to ascertain the reason why ADiGator cannot produce derivative files, it is necessary to
run the function adigatorGenFiles4dgpops2 on the user setup structure. In fact, derivative files can be
generated without running GPOPS — II simply by executing the command

adigatorfilenames = adigatorGenFiles4gpops2(setup)

It is also noted that ADiGator is updated regularly when bugs are found. For more information about using
ADiGator, the user is referred to the ADiGator user’s guide as found on on the ADiGator project page
http://sourceforge.net/projects/adigator.


http://sourceforge.net/projects/adigator
http://sourceforge.net/projects/adigator
http://sourceforge.net/projects/adigator
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2.8 Scaling the Optimal Control Problem

It is always preferable for the user to scale an optimal control problem of interest based on an understanding
of the problem itself. In many cases, however, it may be difficult to determine a suitable scaling of the
optimal control problem. While it is beyond the scope of the software to provide a general procedure for
scaling, several different scaling options have been provided in GPOPS — Il that may prove useful to the user
in lieu of manually scaling the problem. We now explain these options in more detail than were explained
earlier in this user’s guide.

Setting setup.scales.method to ’automatic-bounds’ scales the problems based on the variable bounds
and by computing scale factors based on randomly sampling the first derivatives of the optimal control
problem functions. © Setting setup.scales.method to 'automatic-guess’ scales the problem once using the
initial guess supplied by the user. Note that the option ’automatic-guess’ does not re-scale the problem on
each mesh refinement iteration, but only scales the problem a single time based purely on whatever guess
the user provides. Setting setup.scales.method to ’automatic-guessUpdate’ scales the problem on the user-
supplied initial guess on the first mesh and from the solution generated by GPOPS — Il on every mesh during
the mesh refinement. As a result, the option ’automatic-guessUpdate’ performs a new scaling of the optimal
control problem for every mesh on which the problem is solved. Setting setup.scales.method to ’automatic-
hybrid’ provides a hybrid scaling that uses the same method as ’automatic-bounds’ on the first mesh and
then performs a single scaling from the solution obtained on the first mesh. Setting setup.scales.method to
"automatic-hybridUpdate’ scales the problem using the method ’automatic-bounds’ on the initial mesh and
using the method 'automatic-guessUpdate’ on every subsequent mesh during the mesh refinement. In order
to maximize repeatability, scales.method is changed to ’defined’ when using any scaling method where
the scales are not changed between mesh iterations (in other words, the scales are set to ’defined” when
using ’automatic-bounds’, ’automatic-guess’, or ’automatic-hybrid’). Finally, other fields in the structure
setup.scales are created during an execution of GPOPS — I but the user need not in general be concerned
with these additional fields. If a user desires an explanation of these other fields that are created, please
contact the authors.

3 Output from an Execution of GPOPS — II

The output of an execution of GPOPS — Il is the structure output, where output contains the following
fields:

e result: a structure that contains the following fields:

— solution: the optimal time, state, and control, in each phase and the optimal value of the static
parameter vector. The optimal time, state, and control are stored, respectively, in the fields
solution.phase(p).time, solution.phase(p).state, and solution.phase(p).control, while the
static parameter is stored in the field solution.parameter;

— objective: the optimal value of the objective function of the optimal control problem;
e result.setup: the setup structure that produced the result found in result with GPOPS — IT;

e result.nextsetup: the setup structure that would be used for the next mesh refinement iteration
had the mesh refinement process not terminated on the previous mesh (due to the mesh refinement
accuracy tolerance not having been satisfied).

e meshhistory: the solution and error estimate for each mesh on which the NLP was solved (only if
mesh refinement is used);

e meshiterations: the number of mesh refinement iterations that were taken by GPOPS — II (only if
mesh refinement is used);
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4 Useful Information for Debugging a GPOPS — I Problem

One aspect of GPOPS — II that may appear confusing when debugging code pertains to the dimensions of
the arrays and the corresponding time values. It is important to remember that GPOPS — II uses collocation
at Legendre-Gauss-Radau points. Because the Legendre-Gauss-Radau points include the initial point but
do not include the final point, the dynamics, path constraints, and integrand cost are computed only at
the Legendre-Gauss-Radau points. While this may appear to be a bit strange, the fundamental point
here is that Legendre-Gauss-Radau quadrature (which is used in GPOPS — II) only evaluates the functions
at the Legendre-Gauss-Radau points. Do not try to “fool” GPOPS —II by adding the endpoints to the
computation of the dynamics, path constraints, or integrand cost. If you do this, you will get an error
because the dimensions are incorrect. For a more complete mathematical description of the collocation
method used in GPOPS — II, see the references on the Radau orthogonal collocation method as given in the
bibliography at the end of this document.

5 GPOPS — I Examples

In this Section several examples of using GPOPS — II are provided. Each of the examples are problems that
have been studied extensively in the open literature and the solutions to these problems are well known.
The first example is the hyper-sensitive optimal control problem from Ref. 13. The second example is a
multiple-stage launch vehicle ascent problem taken from Refs. 14, 15, and 12. The third example is a tumor
anti-angiogenesis optimal control problem from Refs. and 12. The fourth example is the reusable launch
vehicle entry problem taken from Ref. 12. The fifth example is the minimum time-to-climb of a supersonic
aircraft taken from Refs. and 12. The sixth example is the optimal control of a hang glider and is
taken from Ref. 18. Finally, the seventh example is the optimal control of a two-strain tuberculosis model
and is taken from Ref. 19. For each example the optimal control problem is described quantitatively, the
GPOPS — II code is provided, and the solution obtained using GPOPS — II is provided. For reference, all
examples were solved on a 2.5 GHz Core i7 MacBook Pro with 16 GB of RAM running Mac OS-X 10.7.5
(Lion). Finally, in the cases where IPOPT was used as the NLP solver, the IPOPT MATLAB mex files
available on the IPOPT website were used. These IPOPT mex files were compiled with the linear solver
MUMPS.

5.1 Hyper-Sensitive Problem

Consider the following hyper-sensitive' ="~ optimal control problem adapted from Ref.'® Minimize the
cost functional .
s
J=1 /0 (a2 + u2)dt (M)
subject to the dynamic constraint
t=—-2>+u (8)
and the boundary conditions
z(0) = 15 , =z(ty) = 1 (9)

where ¢y is fixed. It is known that for sufficiently large values of ¢y that the solution to this example exhibits a
so called “take-off” “cruise”, and “landing” structure where the interesting behavior occurs near the initial
and final time (see Ref.'” for details). In particular, the “cruise” segment of this trajectory is constant
(that is, the segment where the state and control are, interestingly, both zero) becomes an increasingly large
percentage of the total trajectory time as t; increases. Given the structure of the solution, one would expect
that the majority of collocation points would be placed in the “take-off” and “landing” segments while few
collocation points would be placed in the “cruise” segment.

The hyper-sensitive optimal control problem of Eqgs. (7)—(9) was solved using GPOPS — II witht the NLP
solver IPOPT and a mesh refinement tolerance € = 10~7. In order to solve this problem using GPOPS — 1I,
the continuous function, hyperSensitiveContinuous.m, was written to compute both the right-hand side of
the differential equations and the integrand of the Lagrange cost. The result of integrating the integral
specified in hyperSensitiveContinuous is then the field ’integral’ of the structure input to the endpoint
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function hyperSensitiveEndpoint.m. The complete MATLAB code that was written
sensitive optimal control problem of Eqs. (7)—(9) is given below.

to solve the hyper-

77777777777777777777777 Hyper-Sensitive Problem —-———----------—-—------———
This example is taken from the following reference:

Rao, A. V., and Mease, K. D., "Eigenvector Approximate Dichotomic Basis
Methods for Solving Hyper-Sensitive Optimal Control Problems," Optimal

o° o° o o° o o
O o© o° o° o° o° o

Control Applications and Methods, Vol. 21, No. 1., January-February,
2000, pp. 1-17.

clear all; clc

B Provide All Bounds for Problem --————--—----—--—-——--———— %

t0 0;

tf = 1000;

x0 = 1.5;

xf = 1;

xMin = -50;

xMax = +50;

uMin = -50;

uMax +50;

e Setup for Problem Bounds —-——————————————————————— %

bounds.phase.initialtime.lower = tO0;

bounds.phase.initialtime.upper = tO0;

bounds.phase.finaltime.lower = tf;

bounds.phase.finaltime.upper = tf;

bounds.phase.initialstate.lower = x0;

bounds.phase.initialstate.upper = x0;

bounds.phase.state.lower = xMin;

bounds.phase.state.upper = xMax;

bounds.phase.finalstate.lower = xf;

bounds.phase.finalstate.upper = xf;

bounds.phase.control.lower = uMin;

bounds.phase.control.upper = uMax;

bounds.phase.integral.lower = 0;

bounds.phase.integral.upper = 100000;

g——— Provide Guess of Solution --——————--——--———————————— %

guess.phase.time = [tO0; tf];

guess.phase.state = [x0; xf];

guess.phase.control = [0; 0];

guess.phase.integral = 0;

B Provide Mesh Refinement Method and Initial Mesh - ———--——----——- %

mesh.method 'hp-LiuRao-Legendre';

mesh.tolerance = le-7;

mesh.maxiterations = 45;

mesh.colpointsmin = 2;

mesh.colpointsmax = 14;

mesh.phase.colpoints = 4xones(1,10);

mesh.phase.fraction = 0.lxones(1,10);

e Assemble Information into Problem Structure —--——-—-————--————- %

setup.name = 'Hyper—-Sensitive-Problem';
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setup.functions.continuous = @hyperSensitiveContinuous;
setup.functions.endpoint = @hyperSensitiveEndpoint;
setup.displaylevel = 2;

setup.bounds = bounds;

setup.guess = guess;

setup.mesh = mesh;

setup.nlp.solver = 'ipopt';
setup.nlp.snoptoptions.tolerance = 1le-10;
setup.nlp.snoptoptions.maxiterations = 20000;
setup.nlp.ipoptoptions.linear_solver = 'mab57"';
setup.nlp.ipoptoptions.tolerance = 1le-10;
setup.derivatives.supplier = 'adigator';
setup.derivatives.derivativelevel = 'second';

setup.method = 'RPM-Differentiation';

e Solve Problem Using GPOPS2 ——————————————————————— %
tic

output = gpops2 (setup);

toc

function phaseout = hyperSensitiveContinuous (input)
t = input.phase.time;

x = input.phase.state;

u = input.phase.control;

% xdot = —-x."3+u;

xdot = —-x+u;

phaseout.dynamics = xdot;

phaseout.integrand = 0.5% (x."2+u."2);

function output = hyperSensitiveEndpoint (input)

g = input.phase.integral;
output.objective = g;

The state, x(t), control, u(t), and mesh refinement history that arise from the execution of GPOPS — II
with the above code and the NLP solver IPOPT is summarized in Figs. la—1c, while a table showing the
estimate of the relative error as a function of the mesh refinement iteration is shown in Table 1.
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Figure 1: Solution to Hyper-Sensitive Problem Obtained Using GPOPS — II with the NLP Solver IPOPT
and a Mesh Refinement Tolerance of 1077.

Table 1: Relative Error Estimate vs. Mesh Refinement Iteration for Hyper-Sensitive Problem.
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5.2 Low-Thrust Orbit Transfer Problem

Consider the following low-thrust orbital transfer optimal control problem taken from Ref. 12. The state of
the system is given in modified equinoctial elements while the control is given in radial-transverse-normal
coordinates. The goal is to determine the state

X:(pafagvhakaL’w)a (10)

the control
u= (UT,UQ,U}L), (11)

and the throttle parameter, 7, that transfer the spacecraft from an initial orbit to a final orbit while maxi-
mizing the final weight of the spacecraft. The spacecraft starts in a circular low-Earth orbit with inclination
i(to) = 28.5deg and terminates in a highly elliptic low periapsis orbit with inclination i(¢;) = 63.4 deg. The
continuous-time optimal control problem corresponding to this orbital transfer problem can be stated in
Mayer form as follows. Minimize the cost functional

J = —u(ty) (12)
subject to the dynamic constraints
%X =A(X)A + b, (13)
T(1 .01
W = _M’ (14)
Iy
the path constraint
lul| =1, (15)
the parameter constraint
—50 <7 <0, (16)
and the boundary conditions
p(to) = 21837080.052835 ft, p(ty) = 40007346.015232 ft,
fto) = f2(ty) + g2(ty) = 0.73550320568829,
g(to) = VR2(tg) + k2%(ty) = 0.61761258786099,
h(tg) = —0 25396764647494, fEp)h(ty) + g(ty)k(ty) =0, (17)
k(to) = g(tp)h(ty) —k(ts)f(tr) <0,
L(ty) =7 rad7 w(tg) = 1 1bm,
i(tp) = 28.5 deg, i(ty) =634 deg.

The matrix A(x) in Eq. (13) is given as

_ 0 2p\/% 0 -

\/gsin(L) \/%l ((q—zl) cos(L) %Z (hsin(L) — kcos(L))
i@+

q
—, /2 cos(L) L((q sin(L) + 2L (hsin(L) — kcos(L)
A |VE g X ) (18)
0 0 ps COb(L)
iz ) 2¢
s“ sin(L
I 0 0 \/g hsm ) — kcos(L)) |
while the vector is
0
0
0
0

=

3

hSHS)
e
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where
q =1+ fcos(L) + gsin(L), r=p/q,
a? =h? —k?, x = Vh? + k2, (20)
52 =142

The spacecraft acceleration is modeled as
A=A,+Ar, (21)

where A, is the acceleration due to the oblateness of the Earth while A is the thrust specific force. The
acceleration due to Earth oblateness is expressed in rotating radial coordinates as

A, = Qdg, (22)

where Q.. is the transformation from rotating radial coordinates to Earth centered inertial coordinates. The
matrix Q, is given column-wise as

Q, = [ir ip in], (23)
where the basis vectors i,, ig, and i;, are given as
. r . rXxv . . .
i, = H , iy = W , dp = i xi,. (24)

Furthermore, the vector dg is defined as
5g = 5gnin - 5grir7 (25)

where 1i,, is the local North direction and is defined as

e, — (eli,)i,

, = ———= 771
" len — (efir)ir|

and e, = (0,0,1). The oblate earth perturbations are then expressed as

4 k
5gr —T% Sk +1) <R6> Pi(s) s, (27)

r

] 4 ko
Sgn = —”CO““‘(“”Z(R&) PL(s) k. (28)

r

where R, is the equatorial radius of the earth, Py(s) (s € [~1,+1]) is the k*"-degree Legendre polynomial,
P, is the derivative of Py with respect to s, s = sin(¢), and Jj, represents the zonal harmonic coefficients for
k =(2,3,4). Next, the acceleration due to thrust is given as

T(1 .01
:go ( +00T)u

A 29
T " (29)
Finally, the physical constants used in the problem are given as

Iy =450 s, T = 4.446618 x 1073 1bf,

go = 32.174 ft/s?, p = 1.407645794 x 106 3 /s?, (30)

R, = 20925662.73 ft, Jy = 1082.639 x 1079,

J3 = —2.565 x 107°, Jy = —1.608 x 1076.

5.3 Initial Guess Generation

The initial guess was obtained using a variable step ordinary differential equation solver by propagating the
modified equinoctial dynamics from the initial conditions to a final time of 9x 10* s with a throttle parameter
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of 7 = —25. In computing this initial guess the control direction was assumed to lie along the direction of
inertial velocity, that is,
TV
u=Q, —. (31)
vl

The values at the desired collocation points were found using interpolation to form the initial guess. These
collocation points generated from an initial mesh of M intervals each containing a specified number of Radau
collocation points. The number of intervals M was calculated by

M =ceil(Ly) — 1. (32)

The intervals were then evenly spaced on the domain of the longitude L as

m—1
Lypy=Li+———(Ly—L;
+ (- L) (%)
for m = 1,...,M 4+ 1 and where L; and Ly are the initial and terminal values of the true longitude L.

Finally, the evenly spaced intervals on the L domain were converted to corresponding intervals on the time ¢
domain. The desired number of collocation points were then used within each mesh interval. It is noted that
the approach described here for obtaining the initial initial mesh provides an increased density of collocation
points near periapsis of the trajectory.

6 Results

The MATLAB code that solves the low-thrust orbit transfer problem using GPOPS — II is shown below.
In particular, this problem requires the specification of a function that computes the cost functional, the
differential-algebraic equations (which, it is noted, include both the differential equations and the path
constraints), and the event constraints in the problem. Solutions to the low-thrust orbital transfer problem
are shown in Figs. 2 and 3. Furthermore, a three-dimensional view of the optimal orbital transfer is shown
in Fig. 4.

& oo Low-Thrust Orbit Transfer Example —————————————- %
% This example is taken verbatim from the following reference: %
% Betts, J. T., Practical Methods for Optimal Control Using %
% Nonlinear Programming, SIAM Press, Philadelphia, 2009. %
clc

clear all

close all

% Constants and initial conditions %

T = 4.446618e-3; % [1lb]

Isp = 450; % [s]

mu = 1.407645794el6; % [ft"3/s72]
gs = 32.174; % [ft/s 2]

Re = 20925662.73; % [ft]

J2 = 1082.639%e-6;

J3 = -2.565e-6;

J4 = -1.608e-6;

p0 = 21837080.052835; % [ft]

f0 = 0;
g0 = 0;
hO = -0.25396764647494;
k0 = 0;
LO = pi;

w0 = 1;
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tau = -25;

t0 0;

tf = 90000;

% Set up auxiliary data for problem
auxdata.Isp = Isp; % [s]

auxdata.mu = mu; % [ft"3/s72]

auxdata.gs = gs; % [ft/s"2]

auxdata.T = T; % [1lb]

auxdata.Re = Re; % [ft]

auxdata.J2 = J2;

auxdata.J3 = J3;

auxdata.J4 = J4;

% Generate initial guess for problem
initial.p0 = p0;

initial.f0 = £0;

initial.g0 = g0;

initial.h0 = hO;

initial.k0 = kO;

initial.LO0 = LO;

initial.w0 = wO0;

initial.t0 = tO;

guess.tau = tau;

qguess.tf = tf;

initialguess = lowThrustPropagate (auxdata,initial, guess);
% Set up bounds on state, control, and time

t0 = 0; tmin = t0; tfmin = 50000; tmax = 100000;
p0 = 21837080.052835; pf = 40007346.015232;
f0 = 0;

g0 = 0;

hO = -0.25396764647494;
k0 = 0;

L0 = pi;

w0 = 1;

pmin = 20000000; pmax = 60000000;
fmin = -1; fmax = +1;
gmin = -1; gmax = +1;
hmin = -1; hmax = +1;
kmin = -1; kmax = +1;
ILmin = LO; Lmax = 9*2+pi;
wmnin = 0.1; wmax = w0;
urmin = -1; urmax = +1;
utmin = -1; utmax = +1;
uhmin = -1; uhmax = +1;
taumin = -50; taumax = 0;

bounds.phase.initialtime.lower = tO0;
bounds.phase.initialtime.upper = tO0;
bounds.phase.finaltime.lower = tfmin;
bounds.phase.finaltime.upper = tmax;

bounds.phase.initialstate.lower = [p0,f0,g0,h0,k0,L0,w0];
bounds.phase.initialstate.upper = [p0,£f0,90,h0,k0,L0,w0];

bounds.phase.state.lower = [pmin, fmin,gmin, hmin,kmin, Lmin, wmin];
bounds.phase.state.upper = [pmax, fmax,gmax, hmax,kmax, Lmax, wmax];
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bounds.phase.finalstate.lower = [pf, fmin,gmin, hmin, kmin, Lmin, wmin];
bounds.phase.finalstate.upper = [pf, fmax, gmax,hmax,kmax, Lmax, wmax] ;

bounds.phase.control.lower = [urmin,utmin,uhmin];
bounds.phase.control.upper = [urmax,utmax,uhmax];

bounds.parameter.lower = taumin;
bounds.parameter.upper = taumax;

bounds.phase.path.lower = 0;
bounds.phase.path.upper = 0;

bounds.eventgroup.lower = [0.7355032056882972,0.61761258786099°2,0,-31;
bounds.eventgroup.upper = [0.7355032056882972,0.61761258786099°2,0,01;
% Generate an Initial Guess by Propagating the Dynamics %

guess = initialguess;

mesh.method = 'hp-LiuRao-Legendre';
mesh.tolerance = le-5;
mesh.maxiterations = 10;
mesh.colpointsmax = 6;
mesh.colpointsmin = 4;

N = length(guess.fraction);
mesh.phase.colpoints = 4%ones(1,N);
mesh.phase.fraction = guess.fraction;

setup.name = 'Betts-Low-Thrust-Orbit-Transfer';
setup.functions.continuous = @lowThrustContinuous;
setup.functions.endpoint = @lowThrustEndpoint;
setup.nlp.solver = 'ipopt';
setup.nlp.ipoptoptions.linear_solver = 'mab57"';
setup.auxdata = auxdata;

setup.bounds = bounds;

setup.guess = guess;

setup.derivatives.supplier = 'adigator';
setup.derivatives.derivativelevel = 'second';
setup.derivatives.dependencies = 'sparseNaN';
setup.derivatives.stepsize = le-6;
setup.scales.method = 'automatic-bounds';
setup.mesh = mesh;

setup.method = 'RPM-Differentiation';

o

Solve problem and extract solution

o\

e
-
Q

~

output = gpops2 (setup);
gpopsCPU = toc;

solution = output.result.solution;

function phaseout = lowThrustContinuous (input)
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Isp = input.auxdata.Isp; % [s]

mu = input.auxdata.mu; % [ft"3/s72]
gs = input.auxdata.gs; % [ft/s 2]

T = input.auxdata.T; % [1lDb]

Re = input.auxdata.Re; % [ft]

J2 = input.auxdata.J2;
J3 = input.auxdata.J3;
J4 = input.auxdata.J4;

o
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% Extract state, control, and parameter for problem
p = input.phase.state(:,1);

f = input.phase.state(:,2);

g = input.phase.state(:,3);

h = input.phase.state(:,4);

k = input.phase.state(:,5);

L = input.phase.state(:,6);

w = input.phase.state(:,7);

ur = input.phase.control(:,1);

ut = input.phase.control (:,2);

uh = input.phase.control(:,3);
tau = input.phase.parameter(:,1);

g = 1l+f.*xcos(L)+g.xsin (L) ;
r = p./q;

alpha2 = h.xh-k.x*k;

chi = sqgrt (h.xh+k.xk);

s2 = l+chi.xchi;

rX = (r./s2).x(cos(L)+alpha2.xcos(L)+2xh.xk.xsin (L)) ;
rY = (r./s2).*(sin(L)-alpha2.*sin(L)+2xh.*k.xcos(L));
rZz = (2*«r./s2) .+ (h.*sin(L)-k.xcos (L)) ;

rVec = [rX rY rZ];

rMag = sqrt(rX. 2+rY. " 2+rZ2."2);
rXZMag = sqrt (rX. 2+rzZ."2);

vX = —(1./s2).%sgrt (mu./p) .*(sin(L)+alpha2.xsin (L) -2*h.*k.*cos (L) +g-2+f.*h.*xk+alpha2.x*q);
vY = - (1./s2) .*sqgrt (mu./p) .* (-cos (L) +alpha2.*cos (L) +2+xh.xk.*sin (L) -f+2*g.+h.+k+alpha2.xf);
vZ = (2./s2).*xsqrt (mu./p) .x (h.*cos (L) +k.xsin(L)+f.+h+g.*k);

vVec = [vX VY VvZ];

rCrossv = cross (rVec,vVec,2);

rCrossvMag = sqgrt (rCrossv(:,1)."2+rCrossv(:,2). 2+rCrossv(:,3).72);

rCrossvCrossr = cross (rCrossv,rVec,?2);

irl = rVec(:,1)./rMag;

ir2 = rVec(:,2)./rMag;

ir3 = rVec(:,3)./rMag;

ir = [irl ir2 ir3];

itl = rCrossvCrossr(:,1)./(rCrossvMag.*rMag) ;

it2 = rCrossvCrossr(:,2) ./ (rCrossvMag.x*rMag) ;

it3 = rCrossvCrossr(:,3)./(rCrossvMag.*rMag) ;

it = [itl it2 it3];

ihl = rCrossv(:,1)./rCrossvMag;

ih2 = rCrossv(:,2)./rCrossvMag;

ih3 = rCrossv(:,3)./rCrossvMag;

ih = [ihl ih2 1ih3];

’

enir = ir3;
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enirirl = enir.*irl;
enirir2 = enir.xir2;
enirir3 = enir.*ir3;

enenirirl = O-enirirl;
enenirir2 = O-enirir2;
enenirir3 = l-enirir3;

enenirirMag = sqgrt (enenirirl.”2+enenirir2.”2+enenirir3.

inl = enenirirl./enenirirMag;
in2 = enenirir2./enenirirMag;
in3 = enenirir3./enenirirMag;

% Geocentric latitude
sinphi = rZ./rXZMag;
cosphi = sgrt (l-sinphi."2);

o

% Legendre polynomials

P2 = (3%sinphi.”2-2)./2;

P3 = (5%sinphi.” 3-3xsinphi)./2;

P4 = (35+sinphi.”4-30*sinphi."2+3)./8;
dP2 = 3%sinphi;

dP3 = (15xsinphi-3)./2;

dP4 = (140%sinphi.”3-60*sinphi)./8;

[

% Oblate earth perturbations

sumn = (Re./r). 2.xdP2.xJ2+(Re./r)." 3.%dP3.%xJ3+(Re./r) . 4.xdP4.xJ4;
sumr = (2+1)x(Re./r). " 2.%P2.%xJ2+(3+1)x(Re./r) . " 3.%P3.%J3+(4+1)* (Re./r).
Agn = — (muxcosphi./(r."2)) .*sumn;

Agr = —(mu./(r."2)) .xsumr;

agninl = agn.xinl;

Agnin2 = Agn.*in2;

Aagnin3 = agn.xin3;

Aagrirl = aAgr.xirl;
Agrir2 = aAgr.xir2;
Agrir3 = Agr.*ir3;

Agl = aAgninl - agrirl;
Ag2 = Agnin2 - agrir2;
Ag3 = Agnin3 - Agrir3;

Deltagl ir(:,1) .*agl+ir(:,2) .xag2+ir(:, 3) .xag3;
Deltag2 = it (:,1) .xagl+it (:,2) .*xag2+it (:,3) .*ag3;
Deltag3 = ih(:,1) .xagl+ih(:,2).xag2+ih(:,3) .*ag3;

DeltaTl = ((gs*Tx(1+0.01%tau))./w) .*ur;
DeltaT2 = ((gs*T*(1+0.01lxtau))./w).*ut;
DeltaT3 = ((gs*Tx(1+0.01xtau)) ./w) .*uh;

Deltal = Deltagl+DeltaTl;
Delta2 = Deltag2+DeltaT2;
Delta3 = Deltag3+DeltaT3;

“2);

“4.xP4.xJ4;




df = sqgrt(p./mu).*sin(L).*Deltal
+sqrt (p./mu) .x(1./q) .* ((g+l) .*cos (L) +f) .xDelta2
-sqgrt (p./mu) .*(g./q) .* (h.*sin(L)-k.*cos (L)) .+xDelta3;

dg = -sgrt (p./mu) .*cos (L) .+Deltal
+sqgrt (p./mu) .+ (1./q) .* ((g+l) .*sin (L) +g) .«Delta2
+sgrt (p./mu) .* (£./9) .* (h.*sin (L) -k.xcos (L)) .+«Delta3;
dh = sqgrt(p./mu).*(s2.xcos (L) ./ (2xq)) .*Delta3;

dk = sqrt(p./mu).*(s2.xsin(L) ./ (2xq)) .*Delta3;

dL = sqrt(p./mu).x(1./q9) .x(h.*sin(L)-k.xcos (L)) .xDelta3...
+sgrt (mu.*p) .* ((g./p)."2);

dw = —(Tx(1+0.01xtau)/Isp);

phaseout.dynamics = [dp,df,dg,dh,dk,dL,dw];
phaseout.path = ur. 2+ut.”2+uh."2-1;

function output = lowThrustEndpoint (input)

ff = input.phase.finalstate
gf = input.phase.finalstate
hf = input.phase.finalstate
kf = input.phase.finalstate

)
)i
).
)

’

’

(2
(3
(4
(5

wf = input.phase.finalstate(7);

% Declare objective (minimize final weight)

output.objective = -wf;

% Declare event constraints

output.eventgroup.event = [f£72+gf"2 hf "2+kf"2 ff«hf+gfxkf gf+xhf-kf+ff];
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Figure 2: Low-thrust transfer—state variables.
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6.1 Multiple-Stage Launch Vehicle Ascent Problem

The problem considered in this section is the ascent of a multiple-stage launch vehicle. The objective is to
maneuver the launch vehicle from the ground to the target orbit while maximizing the remaining fuel in the
upper stage. It is noted that this example is is found verbatim in Refs. 14, 15, and

6.1.1 Vehicle Properties

The goal of this launch vehicle ascent problem is to steer the vehicle from launch to a geostationary transfer
orbit (GTO). The motion of the ehicle is divided into four distinct phases. Phase 1 starts with the vehicle on
the ground and terminates when the fuel of the first set of solid rocket boosters is depleted. Upon termination
of Phase 1 the first set of solid rocket boosters are dropped. Phase 2 starts where Phase 1 terminates and
terminates when the fuel of the second set of solid rockets boosters is depleted. Phase 3 starts when Phase
2 terminates and termintes when the fuel of the first main engine fuel is depleted. Finally, Phase 4 starts
where Phase 3 terminates and terminates when the vehicle reaches the final GTO. The vehicle data for this
problem is taken verbatim from Ref. 15 or 12 and is shown in Table 2.

Table 2: Vehicle Properties for Multiple-Stage Launch Vehicle Ascent Problem.

’ \ Solid Motors \ Stage 1 \ Stage 2 ‘

Total Mass (kg) 19290 104380 | 19300
Propellant Mass (kg) 17010 95550 16820
Engine Thrust (N) 628500 1083100 | 110094
Isp (sec) 284 301.7 462.4
Number of Engines 9 1 1
Burn Time (sec) 75.2 261 700

6.1.2 Dynamic Model

The equations of motion for a non-lifting point mass in flight over a spherical rotating planet are expressed
in Cartesian Earth centered inertial (ECI) coordinates as

r = v
. 7 T
vV = ———r+—u+ —
> m~ m (34)
_ T
gOIsp

where r(t) = [ z(t) y(t) =z(t) ]T is the position, v = [ vz(t) vy(t) wv.(t) ]T is the Cartesian ECI
velocity, p is the gravitational parameter, T is the vacuum thrust, m is the mass, gy is the acceleration due
to gravity at sea level, I, is the specific impulse of the engine, u = [ Uy Uy Uy ]T is the thrust direction,
and D = [ D, D, D, ]T is the drag force. The drag force is defined as

1
D= _§C;VDAreprVrel||Vrel (35)

where Cp is the drag coefficient, A,.y is the reference area, p is the atmospheric density, and vy is the
Earth relative velocity, where v, is given as

Vil =V —WwXT (36)

where w is the angular velocity of the Earth relative to inertial space. The atmospheric density is modeled
as the exponential function
p = poexp[—h/ho] (37)
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where pg is the atmospheric density at sea level, h = ||r|| — R, is the altitude, R, is the equatorial radius
of the Earth, and hg is the density scale height. The numerical values for these constants can be found in
Table 3.

Table 3: Constants used in the launch vehicle example.

] Constant | Value |
Payload Mass (kg) | 4164
Aref (mz) 4
Ca 0.5
po (kg/m?) 1.225
t1 (s) 75.2
ts () 150.4
tg (b) 261
R, (km) 6378.14
Ve (kmn/s) 7.905

6.1.3 Constraints

The launch vehicle starts on the ground at rest (relative to the Earth) at time tg, so that the ECI initial
conditions are

r(ty) = ro=[56052 0 30434 ]" km
v(ty)) = vo=[0 04076 0 ]T km/s (38)
m(tg) = mo = 301454 kg

The terminal constraints define the target geosynchronous transfer orbit (GTO), which is defined in orbital
elements as

af = 24361.14 km,

ef = 0.7308,

if = 28.5deg, (39)
Q; = 269.8deg,

wy = 130.5deg

The orbital elements, a, e, 7, 2, and w represent the semi-major axis, eccentricity, inclination, right ascension
of the ascending node (RAAN), and argument of perigee, respectively. Note that the true anomaly, v, is
left undefined since the exact location within the orbit is not constrained. These orbital elements can be
transformed into ECI coordinates via the transformation, T,s., where Tyo. is given in.

In addition to the boundary constraints, there exists both a state path constraint and a control path
constraint in this problem. A state path constraint is imposed to keep the vehicle’s altitude above the surface
of the Earth, so that

v > R, (40)

where R, is the radius of the Earth, as seen in Table 3. Next, a path constraint is imposed on the control
to guarantee that the control vector is unit length, so that

a3 = uf +uj +ui =1 (41)

Lastly, each of the four phases in this trajectory is linked to the adjoining phases by a set of linkage
conditions. These constraints force the position and velocity to be continuous and also account for the mass
ejections, as

r(P)(tf)—r(P+1)(to) = 0,
vO(tr) —vPt(t) = 0,  (p=1,...,3) (42)
m® (t7) = m{f), —mP () = 0



6.1 Multiple-Stage Launch Vehicle Ascent Problem 33

where the superscript (p) represents the phase number.
The optimal control problem is then to find the control, u, that minimizes the cost function

J = -m®(ty) (43)

subject to the conditions of Egs. (34), (38), (39), (40), and (41).

The MATLAB code that solves the multiple-stage launch vehicle ascent problem using GPOPS — 1T is
shown below. In particular, this problem requires the specification of a function that computes the cost
functional, the differential-algebraic equations (which, it is noted, include both the differential equations and
the path constraints), and the event constraints in each phase of the problem along with the phase-connect
(i.e., linkage) constraints. The problem was posed in SI units and the built-in autoscaling procedure was
used.

777777777777777 Multiple-Stage Launch Vehicle Ascent Example ———————————-
This example can be found in the following reference:

Rao, A. V., Benson, D. A., Darby, C. L., Patterson, M. A., Francolin, C.
Sanders, I., and Huntington, G. T., "Algorithm 902: GPOPS, A MATLAB
Software for Solving Multiple-Phase Optimal Control Problems Using the
Gauss Pseudospectral Method," ACM Transactions on Mathematical Software,
Vol. 37, No. 2, April-June 2010, Article No. 22, pp. 1-39.

o° o° o o o° o° o
° o© o° o® o° o° o o

o°

B Provide All Physical Data for Problem -——————-—-----——-——— %
earthRadius = 6378145;

gravParam = 3.986012e14;

initialMass = 301454;

earthRotRate = 7.29211585e-5;

sealevelDensity = 1.225;

densityScaleHeight = 7200;

g0 = 9.80665;

scales.length iLg

scales.speed = 1;

scales.time =1;

scales.acceleration = 1;

scales.mass = 1;

scales.force aLg

scales.area = 1;

scales.volume = 1;

scales.density = 1;

scales.gravparam =1;

if 1,

scales.length = earthRadius;

scales.speed = sqgrt (gravParam/scales.length);
scales.time = scales.length/scales.speed;
scales.acceleration = scales.speed/scales.time;
scales.mass = initialMass;

scales.force = scales.mass*scales.acceleration;
scales.area = scales.length”2;

scales.volume = scales.area.*scales.length;
scales.density = scales.mass/scales.volume;
scales.pressure = scales.force/scales.area;
scales.gravparam = scales.acceleration*scales.length”2;
end

omega = earthRotRatexscales.time;
auxdata.omegaMatrix = omegax*[0 -1 0;1 0 0;0 0 0];
auxdata.mu = gravParam/scales.gravparam;

auxdata.cd = 0.5;
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auxdata.sa = 4xpi/scales.area;

auxdata.rhoO = sealevelDensity/scales.density;
auxdata.H = densityScaleHeight/scales.length;
auxdata.Re = earthRadius/scales.length;
auxdata.g0 = g0/scales.acceleration;

latO = 28.5xpi/180;

x0 = auxdata.Rexcos (lat0);

yO0 = (Og

z0 = auxdata.Rex*sin (lat0);

r0 = [x0 y0 z0];

v0 = rOxauxdata.omegaMatrix.';
unitr0 = r0/norm(r0,2);

speedrell = 5/scales.speed;

vO0 = v0 + speedrelOxunitr0;

btSrb = 75.2/scales.time;
btFirst = 261/scales.time;
btSecond = 700/scales.time;

t0 = 0/scales.time;

tl = 75.2/scales.time;
t2 = 150.4/scales.time;
t3 = 261/scales.time;
t4 = 961/scales.time;

mTotSrb = 19290/scales.mass;

mPropSrb = 17010/scales.mass;

mDrySrb = mTotSrb-mPropSrb;

mTotFirst = 104380/scales.mass;

mPropFirst = 95550/scales.mass;

mDryFirst = mTotFirst-mPropFirst;
mTotSecond = 19300/scales.mass;

mPropSecond = 16820/scales.mass;

mDrySecond = mTotSecond-mPropSecond;
mPayload = 4164/scales.mass;

thrustSrb = 628500/scales.force;
thrustFirst = 1083100/scales.force;
thrustSecond = 110094/scales.force;

mdotSrb = mPropSrb/btSrb;

ispSrb = thrustSrb/ (auxdata.g0+mdotSrb) ;
mdotFirst = mPropFirst/btFirst;

ispFirst = thrustFirst/ (auxdata.gO+«mdotFirst);
mdotSecond = mPropSecond/btSecond;

ispSecond = thrustSecond/ (auxdata.g0+mdotSecond) ;
af = 24361140/scales.length;

ef = 0.7308;

incf = 28.5%pi/180;

Omf = 269.8xpi/180;

omf = 130.5xpi/180;

nuguess = 0;

cosincf = cos(incf);

cosOmf = cos (Omf) ;

cosomf = cos (omf);

oe = [af ef incf Omf omf nuguess];

[rout,vout] = launchoe2rv (oe,auxdata.mu);

rout = rout';

vout = vout';

ml0 = mPayload+mTotSecond+mTotFirst+9+«mTotSrb;
mlf = ml0- (6xmdotSrb+mdotFirst) «tl;

m20 = mlf-6+mDrySrb;

m2f = m20- (3*mdotSrb+mdotFirst)  (t2-tl);

m30 = m2f-3xmDrySrb;

m3f = m30-mdotFirst«* (t3-t2);

m40 = m3f-mDryFirst;
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m4f = mPayload;

bounds.phase (iphase) .control.upper 10xones (1, 3);

auxdata.thrustSrb = thrustSrb;
auxdata.thrustFirst = thrustFirst;
auxdata.thrustSecond = thrustSecond;
auxdata.ispSrb = ispSrb;
auxdata.ispFirst = ispFirst;
auxdata.ispSecond = ispSecond;
rmin = -2xauxdata.Re;
rmax = -rmin;
vmin = -10000/scales.speed;
vmax = —-vmin;
- Provide Bounds and Guess in Each Phase of Problem —--——————————— %
iphase = 1;
bounds.phase (iphase) .initialtime.lower = [t0];
bounds.phase (iphase) .initialtime.upper = [t0];
bounds.phase (iphase) .finaltime.lower = [tl];
bounds.phase (iphase) . finaltime.upper = [tl];
bounds.phase (iphase) .initialstate.lower = [r0(1:3),v0(1:3),ml0];
bounds.phase (iphase) .initialstate.upper = [r0(1:3),v0(1:3),ml0];
bounds.phase (iphase) .state.lower = [rmin*ones(l,3),vminxones(1,3),mlf];
bounds.phase (iphase) .state.upper = [rmax*ones (1l,3),vmaxxones(1l,3),ml0];
bounds.phase (iphase) .finalstate.lower = [rminxones(1l,3),vmin*ones(1l,3),mlf];
bounds.phase (iphase) .finalstate.upper = [rmax*ones(l,3),vmax*ones(1l,3),ml0];
bounds.phase (iphase) .control.lower = -10%ones (1, 3);

(

(

bounds.phase (iphase) .control.upper +10%ones (1, 3);

= +

bounds.phase (iphase) .path.lower = [1];
bounds.phase (iphase) .path.upper = [1];
guess.phase (iphase) .time = [t0; tl1];
guess.phase (iphase) .state(:,1) = [r0(1l); r0(1)1];
guess.phase (iphase) .state(:,2) = [x0(2); r0(2)1]1;
guess.phase (iphase) .state (: ,3) = [r0(3); r0(3)];
guess.phase (iphase) .state(:,4) = [v0(1l); vO(1)]1;
guess.phase (iphase) .state(:,5) = [v0(2); v0(2)];
guess.phase (iphase) .state(:,6) = [v0(3); v0(3)1];
guess.phase (iphase) .state(:,7) = [ml0; mlf];
guess.phase (iphase) .control (:,1) = [0; 0];
guess.phase (iphase) .control (:,2) = [1; 11;
guess.phase (iphase) .control (:,3) = [0; 0];
iphase = 2;
bounds.phase (iphase) .initialtime.lower = [tl];
bounds.phase (iphase) .initialtime.upper = [tl];
bounds.phase (iphase) .finaltime.lower = [t2];
bounds.phase (iphase) .finaltime.upper = [t2];
bounds.phase (iphase) .initialstate.lower = [rmin*ones(l,3),vminxones(1l,3),m2f];
bounds.phase (iphase) .initialstate.upper = [rmax*ones(l,3),vmaxrones(l,3),m20];
bounds.phase (iphase) .state.lower = [rmin*ones(1l,3),vminxones(1,3),m2f];
bounds.phase (iphase) .state.upper = [rmax*ones (1l,3),vmaxxones (1l,3),m20];
bounds.phase (iphase) .finalstate.lower = [rminxones(1l,3),vmin*ones(1l,3),m2f];
bounds.phase (iphase) .finalstate.upper = [rmax*ones(l,3),vmax*ones(1l,3),m20];
bounds.phase (iphase) .control.lower = -10xones(1,3);

( -
bounds.phase (iphase) .path.lower = 1;
bounds.phase (iphase) .path.upper = 1;
guess.phase (iphase) .time = [tl; t2];
guess.phase (iphase) .state(:,1) = [xr0(1l); r0(1)1;
guess.phase (iphase) .state(:,2) = [r0(2); 10(2)];
guess.phase (iphase) .state(:,3) = [r0(3), 0(3)1;
guess.phase (iphase) .state(:,4) = [v0(1); vO(l)];
guess.phase (iphase) .state(:,5) = [v0(2), 0(2)1;
guess.phase (iphase) .state(:,6) = [v0(3); VO(3)];
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guess.phase (iphase) .state(:,7) = [ml0; mlf];
guess.phase (iphase) .control (:,1) = [0; 0];

guess.phase (iphase) .control (:,2) = [1; 11;

guess.phase (iphase) .control (:,3) = [0; 0];

iphase = 3;

bounds.phase (iphase) .initialtime.lower = [t2];
bounds.phase (iphase) .initialtime.upper = [t2];
bounds.phase (iphase) .finaltime.lower = [t3];
bounds.phase (iphase) .finaltime.upper = [t3];
bounds.phase (iphase) .initialstate.lower = [rmin*ones(l,3),vminxones(1l,3),m3f];
bounds.phase (iphase) .initialstate.upper = [rmax*ones(l,3),vmax*ones(l,3),m30];
bounds.phase (iphase) .state.lower = [rmin*ones(1l,3),vminxones(1l,3),m3f];
bounds.phase (iphase) .state.upper = [rmax*ones(1l,3),vmaxxones(1,3),m30];
bounds.phase (iphase) .finalstate.lower = [rminxones(1l,3),vmin*ones(1l,3),m3f];
bounds.phase (iphase) .finalstate.upper = [rmax*ones (1, 3),vmax*ones (1l,3),m30];
bounds.phase (iphase) .control.lower = -10*ones (1, 3);
bounds.phase (iphase) .control.upper = +10*ones (1, 3);
bounds.phase (iphase) .path.lower = 1;

bounds.phase (iphase) .path.upper = 1;

guess.phase (iphase) .time = [t2; t3];

guess.phase (iphase) .state(:, 1) [rout (1); rout(l)];
guess.phase (iphase) .state(:,2) = [rout (2); rout(2)];
guess.phase (iphase) .state(:,3) = [rout(3); rout(3)];
guess.phase (iphase) .state(:,4) = [vout(l); vout(l)];
guess.phase (iphase) .state(:,5) = [vout(2); vout(2)];
guess.phase (iphase) .state(:,6) = [vout(3); vout(3)];
guess.phase (iphase) .state(:,7) = [m30; m3f];
guess.phase (iphase) .control (:,1) = [1; 11;

guess.phase (iphase) .control(:,2) = [0; 0];

guess.phase (iphase) .control (:,3) = [0; 0];

iphase = 4;

bounds.phase (iphase) .initialtime.lower = [t3];
bounds.phase (iphase) .initialtime.upper = [t3];
bounds.phase (iphase) .finaltime.lower = [t3];
bounds.phase (iphase) .finaltime.upper = [t4];
bounds.phase (iphase) .initialstate.lower = [rmin*ones(l,3),vminxones(1l,3),m4f];
bounds.phase (iphase) .initialstate.upper = [rmax*ones(l,3),vmaxxones(l,3),m40];
bounds.phase (iphase) .state.lower = [rmin*ones(1l,3),vminxones(1l,3),m4f];
bounds.phase (iphase) .state.upper = [rmax*ones (1l,3),vmaxxones(1l,3),m40];
bounds.phase (iphase) .finalstate.lower = [rminxones(1l,3),vmin*ones(1l,3),m4f];
bounds.phase (iphase) .finalstate.upper = [rmax*ones (1, 3),vmax*ones (1l,3),m40];
bounds.phase (iphase) .control.lower = -10%ones (1, 3);
bounds.phase (iphase) .control.upper = +10*ones (1, 3);
bounds.phase (iphase) .path.lower = 1;

bounds.phase (iphase) .path.upper = 1;

guess.phase (iphase) .time = [t3; t4];

guess.phase (iphase) .state(:, 1) [rout (1) rout(l)];
guess.phase (iphase) .state(:,2) = [rout(2) rout(2)];
guess.phase (iphase) .state(:,3) = [rout(3) rout(3)];
guess.phase (iphase) .state(:,4) = [vout(l) vout(l)];
guess.phase (iphase) .state(:,5) = [vout (2) vout(2)];
guess.phase (iphase) .state(:,6) = [vout (3) vout(3)];
guess.phase (iphase) .state(:,7) = [m40; m4f];
guess.phase (iphase) .control (:,1) = [1; 11;

guess.phase (iphase) .control (:,2) = [0; 0];

guess.phase (iphase) .control (:,3) = [0; 0];

e Set up Event Constraints That Link Phases --—————---———-——~ %
bounds.eventgroup (l) .lower = [zeros(l,6), —-6xmDrySrb, 0];
bounds.eventgroup (1) .upper = [zeros(l,6), —-6xmDrySrb, O0];
bounds.eventgroup (2) .lower = [zeros(l,6), -3xmDrySrb, 0];
bounds.eventgroup (2) .upper = [zeros(l,6), -3xmDrySrb, 01];
bounds.eventgroup (3) .lower = [zeros(l,6), -mDryFirst, 0];
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bounds.eventgroup (3) .upper = [zeros(l,6), -mDryFirst, 0];

bounds.eventgroup (4) .lower = [af, ef, incf, Omf, omf];
bounds.eventgroup (4) .upper = [af, ef, incf, Omf, omf];

for i=1:4
meshphase (i) .colpoints = 4xones(1,10);
meshphase (i) . fraction = 0.lxones(1,10);
end

setup.name = 'Launch-Vehicle-Ascent-Problem';
setup.functions.continuous = @launchContinuous;
setup.functions.endpoint = @launchEndpoint;
setup.mesh.phase = meshphase;
setup.nlp.solver = 'ipopt';
setup.nlp.snoptoptions.tolerance = le-7;
setup.bounds = bounds;

setup.guess = guess;

setup.auxdata = auxdata;
setup.derivatives.supplier = 'sparseFD';
setup.derivatives.derivativelevel = 'second';
setup.derivatives.dependencies = 'sparseNaN';
% setup.scales.method = 'automatic-bounds';
setup.mesh.method = 'hp-PattersonRao';
setup.mesh.tolerance = le-6;

setup.method = 'RPM-Differentiation';

output = gpops2 (setup);

tl = input.phase(l).time;

x1 = input.phase(l).state;
ul = input.phase(l).control;
rl = x1(:,1:3);

vl = x1(:,4:6);

ml = x1(:,7);

radl = sqgrt(sum(rl.*rl,2));

omegaMatrix = input.auxdata.omegaMatrix;

omegacrossr = rlxomegaMatrix.';

vrell = vl-omegacrossr;

speedrell = sqgrt (sum(vrell.xvrell,2));

hl = radl-input.auxdata.Re;

rhol = input.auxdata.rhoOxexp (-hl/input.auxdata.H);

bcl = (rhol./(2+ml)).*input.auxdata.saxinput.auxdata.cd;
bcspeedl = bcl.xspeedrell;
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bcspeedmatl = repmat (bcspeedl, 1, 3);

Dragl = -bcspeedmatl.xvrell;

muoverradcubedl = input.auxdata.mu./radl."3;
muoverradcubedmatl = [muoverradcubedl muoverradcubedl muoverradcubedl];
gravl = -muoverradcubedmatl.x*rl;

TSrbl = 6xinput.auxdata.thrustSrb*ones(size(tl));

TFirstl = input.auxdata.thrustFirstx*ones (size(tl));

TTotl = TSrbl+TFirstl;

mldotl = -TSrbl./(input.auxdata.gOxinput.auxdata.ispSrb);
m2dotl = -TFirstl./ (input.auxdata.gOsinput.auxdata.ispFirst);
mdotl = mldotl+m2dotl;

gl = 1/2+rhol.+*speedrell.”2;

pathl = [sum(ul.xul,2)];

Toverml = TTotl./ml;

Tovermmatl = [Toverml Toverml Toverml];

thrustl = Tovermmatl.*ul;

rdotl = vl;

vdotl = thrustl+Dragl+gravl;

phaseout (1) .dynamics = [rdotl vdotl mdotl];

phaseout (1) .path = pathl;

% Dynamics in Phase 2
t2 = input.phase(2) .time;

x2 = input.phase (2) .state;
u2 = input.phase(2).control;
r2 = x2(:,1:3);

v2 = x2(:,4:6);

m2 = x2(:,7);

rad2 = sqgrt(sum(r2.*r2,2));

omegaMatrix = input.auxdata.omegaMatrix;

omegacrossr = r2*omegaMatrix.';

vrel2 = v2-omegacrossr;

speedrel2 = sqgrt (sum(vrel2.xvrel2,2));

h2 = rad2-input.auxdata.Re;

rho2 = input.auxdata.rhoO*exp (-h2/input.auxdata.H);

bc2 = (rho2./(2*m2)) .*input.auxdata.saxinput.auxdata.cd;
bcspeed2 = bc2.xspeedrel2;

bcspeedmat2 = repmat (bcspeed2, 1, 3);

Drag2 = -bcspeedmat2.x*vrel?2;

muoverradcubed2 = input.auxdata.mu./rad2.”3;
muoverradcubedmat2 = [muoverradcubed2 muoverradcubed2 muoverradcubed2];
grav2 = -muoverradcubedmat2.x*r2;

TSrb2 = 3xinput.auxdata.thrustSrb*ones (size(t2));

TFirst2 = input.auxdata.thrustFirst+*ones (size(t2));

TTot2 = TSrb2+TFirst2;

mldot2 = -TSrb2./ (input.auxdata.gO*input.auxdata.ispSrb);
m2dot2 = -TFirst2./(input.auxdata.gOxinput.auxdata.ispFirst);
mdot2 = mldot2+m2dot2;

path2 = [sum(u2.xu2,2)];

Toverm2 = TTot2./m2;

Tovermmat2 = [Toverm2 Toverm2 Toverm2];

thrust2 = Tovermmat2.*u2;

rdot2 = v2;

vdot2 = thrust2+Drag2+grav2;

phaseout (2) .dynamics = [rdot2 vdot2 mdot2];

phaseout (2) .path = path2;

t3 = input.phase(3) .time;
x3 = input.phase (3) .state;
u3 = input.phase(3).control;
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r3 = x3(:,1:3);
v3 = x3(:,4:6);
m3 = x3(:,7);

rad3 = sqgrt (sum(r3.*r3,2));

omegaMatrix = input.auxdata.omegaMatrix;

omegacrossr = r3xomegaMatrix.';

vrel3 = v3-omegacrossr;

speedrel3 = sqrt (sum(vrel3.*vrel3,2));

h3 = rad3-input.auxdata.Re;

rho3 = input.auxdata.rhoOxexp (-h3/input.auxdata.H);

bc3 = (rho3./(2+m3)).*input.auxdata.saxinput.auxdata.cd;
bcspeed3 = bc3.xspeedrel3;

bcspeedmat3 = repmat (bcspeed3, 1, 3);

Drag3 = -bcspeedmat3.*vrel3;

muoverradcubed3 = input.auxdata.mu./rad3."3;
muoverradcubedmat3 = [muoverradcubed3 muoverradcubed3 muoverradcubed3];
grav3 = —muoverradcubedmat3.*r3;

TTot3 = input.auxdata.thrustFirst*ones(size(t3));

mdot3 = -TTot3./ (input.auxdata.g0xinput.auxdata.ispFirst);
path3 = [sum(u3.*u3,2)];

Toverm3 = TTot3./m3;

Tovermmat3 = [Toverm3 Toverm3 Toverm3];

thrust3 = Tovermmat3.*u3;

rdot3 = v3;

vdot3 = thrust3+Drag3+grav3;

phaseout (3) .dynamics = [rdot3 vdot3 mdot3];

phaseout (3) .path = path3;

t4 = input.phase(4) .time;

x4 = input.phase (4) .state;

u4 = input.phase (4).control;

rd = x4(:,1:3);

vd = x4(:,4:6);

md = x4(:,7);

rad4 = sqgrt(sum(réd.=*r4,2));

omegacrossr = ré4xinput.auxdata.omegaMatrix.';

vreld4 = v4-omegacrossr;

speedreld = sqgrt (sum(vreld.xvreld,2));

h4 = rad4-input.auxdata.Re;

rhod4 = input.auxdata.rhoOxexp (-h4/input.auxdata.H);
bcd = (rho4./(2+md)) .+input.auxdata.saxinput.auxdata.cd;
bcspeed4 = bc4.xspeedreld;

bcspeedmat4 = repmat (bcspeed4, 1, 3);

Drag4 = -bcspeedmatéd.xvreld;

muoverradcubed4 = input.auxdata.mu./rad4.”3;
muoverradcubedmat4 = [muoverradcubed4 muoverradcubed4 muoverradcubed4];
grav4 = -muoverradcubedmat4.xr4;

TTot4 = input.auxdata.thrustSecondxones (size(t4));

mdot4 = -TTot4/ (input.auxdata.gO*input.auxdata.ispSecond) ;
path4 = [sum(ud.xu4,2)];

Toverm4 = TTot4d./m4;

Tovermmat4 = [Toverm4 Toverm4 Tovermd];

thrust4 = Tovermmat4.xu4;

rdotd = v4;

vdot4 = thrust4+Dragd+gravé;

phaseout (4) .dynamics = [rdot4 vdot4 mdot4];

phaseout (4) .path = path4;
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function output = launchEndpoint (input)

% Variables at Start and Terminus of Phase 1
t01l = input.phase(l) .initialtime;

tfl = input.phase(l).finaltime;

x01 input.phase (1) .initialstate;

xfl = input.phase(l).finalstate;

% Variables at Start and Terminus of Phase 2
t02 = input.phase(2).initialtime;

tf2 = input.phase(2).finaltime;

x02 = input.phase(2).initialstate;

xf2 = input.phase(2).finalstate;

% Variables at Start and Terminus of Phase 3
t03 = input.phase(3).initialtime;

tf3 = input.phase(3).finaltime;

x03 = input.phase(3).initialstate;

xf3 = input.phase(3).finalstate;

% Variables at Start and Terminus of Phase 2
t04 = input.phase(4).initialtime;

tf4 = input.phase(4).finaltime;

x04 = input.phase(4).initialstate;

xf4 = input.phase(4).finalstate;

% Event Group 1l: Linkage Constraints Between Phases 1 and 2
output.eventgroup(l) .event = [x02(1:7)-xf1(1:7), t02-tfl];

% Event Group 2: Linkage Constraints Between Phases 2 and 3
output.eventgroup(2) .event = [x03(1:7)-xf2(1:7), t03-tf2];

% Event Group 3: Linkage Constraints Between Phases 3 and 4
output.eventgroup (3) .event = [x04(1:7)-x£3(1:7), t04-tf3];

% Event Group 4: Constraints on Terminal Orbit

orbitalElements = launchrv2oe (xf4(1:3).',xf4(4:6)."',input.auxdata.mu);
output.eventgroup (4) .event = orbitalElements(1:5)."';

output.objective = -xf4(7);

L END Function launchEndpoint.m -————----------—————— %
% Begin File: launchEvents.m %

function output = launchEvents (input)

% Variables at Start and Terminus of Phase 1
t0{1} = input.phase(l).initialtime;

tf{1} = input.phase(l).finaltime;

x0{1} = input.phase(l).initialstate;

xf{1} = input.phase(l).finalstate;

% Variables at Start and Terminus of Phase 2
t0{2} = input.phase(2).initialtime;

tf{2} = input.phase(2).finaltime;

x0{2} = input.phase(2).initialstate;

x£{2} input.phase (2) .finalstate;

% Variables at Start and Terminus of Phase 3
t0{3} = input.phase(3).initialtime;

tf{3} = input.phase(3).finaltime;

x0{3} = input.phase(3).initialstate;

xf{3} = input.phase(3).finalstate;

% Variables at Start and Terminus of Phase 2
t0{4} = input.phase(4).initialtime;

tf{4} = input.phase(4).finaltime;

x0{4} = input.phase (4).initialstate;
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xf{4} = input.phase (4).finalstate;

% Event Group 1l: Linkage Constraints Between Phases 1 and 2
output.eventgroup (1) .event = [x0{2}(1:7)-x£{1}(1:7), t0{2}-t£{1}];
% Event Group 2: Linkage Constraints Between Phases 2 and 3
output.eventgroup (2) .event = [x0{3}(1:7)-x£{2}(1:7), to{3}-tf£{2}1;
% Event Group 3: Linkage Constraints Between Phases 3 and 4
output.eventgroup (3) .event = [x0{4}(1:7)-x£{3}(1:7), to{4}-t£{3}1;
% Event Group 4: Constraints on Terminal Orbit
orbitalElements = launchrv2oe (x£{4}(1:3).',x£{4}(4:6)."',input.auxdata.mu);
output.eventgroup (4) .event = orbitalElements(1l:5)."';
output.objective = -x£{4}(7);
% End File: launchEvents.m %
- BEGIN Function launchrvZoe.m ———————————————————————— %
function oe = launchrv2oe (rv,vv,mu);
K = [0;0;1];
hv = cross(rv,vv);
nv = cross (K, hv);
n = sqgrt(nv.'xnv);
h2 = (hv.'xhv);
v2 = (vv.'xvv);
r = sgrt(rv.'xzrv);
ev = 1/mu *( (v2-mu/r)*rv — (rv.'*vv)*vv );
p = h2/mu;
e = sqgrt(ev.'xev);

= p/(l-exe);
i = acos (hv(3)/sqgrt (h2));
Om = acos (nv(l)/n);

if (nv(2)<0-eps),
Om = 2%pi-Om;
end;
om = acos (nv.'xev/n/e);
if (ev(3)<0),
om = 2+pi-om;
end;
nu = acos(ev.'xrv/e/r);
if (rv.'xvv<0),
nu = 2xpi-nu;
end;
oe = [a; e; 1; Om; om; nu];

function [ri,vi] = launchoe2rv (oe,mu)

a=oe (l); e=oe(2); i=oe(3); Om=oce (4); om=oe(5); nu=oe(6);
p = ax(l-exe);

r = p/(l+excos (nu));

rv = [rxcos(nu); r*sin(nu); 0];

vv = sqrt (mu/p) *[-sin(nu); e+cos(nu); 0];
cO = cos(0Om); sO = sin(Om) ;

co = cos(om); so = sin(om) ;

ci cos (i); si sin (i) ;
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R = [cO*co-sOxso*ci —-cO*xso-sOxcoxci sO=*sij;

sOxco+cO*xsoxci —sOxso+cOxcoxci —cO*si;

soxsi co*si @i g
ri = Rxrv;
vi = Rxvv;
e
i END Function launchoe2rv.m —-——————-—--————————————— %
G

The output of the above code from GPOPS — II is summarized in the following three plots that contain
the altitude, speed, and controls.
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Figure 5: Solution to Launch Vehicle Ascent Problem Using GPOPS — II with the NLP Solver SNOPT and
a Mesh Refinement Tolerance of 1077,
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6.2 Tumor-Antiangiogenesis Optimal Control Problem

Consider the following cancer treatment optimal control problem taken from Ref. 16. The objective is to
minimize
p(ty) (44)
subject to the dynamic constraints
. B (t
q(t) = q(t)[b—p—dp*(t) = Gu(t)],
with the initial conditions 0
p(0) = po,
46
a0 = . (46)

and the integral constraint
ty
/ u(r)dr < A. (47)
0

This problem describes a treatment process called anti-angiogenesis where it is desired to reverse the direction
of growth of a tumor by cutting of the blood supply to the tumor. The code for solving this problem is
shown below.

= Tumor Anti-Angiogenesis Problem -————————-——————————— %
% This example is taken from the following reference: %
% Ledzewicz, U. and Schattler, H, "Analysis of Optimal Controls for a %
% Mathematical Model of Tumour Anti-angiogenesis," Optimal Control %
% Applications and Methods, Vol. 29, 2008, pp. 41-57. %

e Data Required by Problem -————------------———— %
auxdata.zeta = 0.084; % per day

auxdata.b = 5.85; % per day

auxdata.d = 0.00873; % per mm"2 per day

auxdata.G = 0.15; % per mg of dose per day

auxdata.mu = 0.02; % per day

a = 75;

A = 15;

e Boundary Conditions --—--———---------——————— %
pMax = ((auxdata.b-auxdata.mu)/auxdata.d)” (3/2);

pMin = 0.1;

gMax = pMax;
gMin = pMin;

yMax = A;
yMin = 0;
uMax = aj;
uMin = 0;
tOMax = 0;
tOMin = 0;
tfMax = 5;
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bounds.phase.initialtime.lower = tOMin;
bounds.phase.initialtime.upper = tOMax;
bounds.phase.finaltime.lower = tfMin;
bounds.phase.finaltime.upper = tfMax;

bounds.phase.initialstate.lower = [p0, gO0];
bounds.phase.initialstate.upper = [p0, gO0];

bounds.phase.state.lower = [pMin, gMin];

bounds.phase.state.upper = [pMax, gMax];
bounds.phase.finalstate.lower = [pMin, gMin];
bounds.phase.finalstate.upper = [pMax, gMax];
bounds.phase.control.lower = uMin;

bounds.phase.control.upper = uMax;

bounds.phase.integral.lower = [0];

bounds.phase.integral.upper = [A];

guess.phase.time = [0; 11;

guess.phase.state = [[p0; pMax], [g0; oMax]];

guess.phase.control = [uMax; uMax];

guess.phase.integral = [7.5];

e Provide Mesh Refinement Method and Initial Mesh - ———--——----——- %
mesh.method = 'hp-LiuRao-Legendre';

mesh.tolerance = le-6;

mesh.phase.colpoints = 4xones(1,10);

mesh.phase.fraction = 0.lxones(1,10);

e Problem Setup - ——————————-————""""———— %
setup.name = 'Tumor-Anti-Angiogenesis-Problem';
setup.functions.continuous = @tumorAntiAngiogenesisContinuous;
setup.functions.endpoint = @tumorAntiAngiogenesisEndpoint;
setup.displaylevel = 2;

setup.auxdata = auxdata;

setup.bounds = bounds;

setup.guess = guess;

setup.mesh = mesh;

setup.nlp.solver = 'ipopt';
setup.derivatives.supplier = 'sparseCD';
setup.derivatives.derivativelevel = 'second';

setup.scales.method = 'none';

setup.method = 'RPM-Differentiation';

R e Solve Problem Using GPOPS2 ———————————————————— %
output = gpops2 (setup);

function phaseout = tumorAntiAngiogenesisContinuous (input)

zeta = input.auxdata.zeta;

b = input.auxdata.b;

mu = input.auxdata.mu;

d = input.auxdata.d;

G = input.auxdata.G;

t = input.phase(l).time;

x = input.phase(l) .state;

u = input.phase(l).control;
p = x(:,1);

q = %x(:,2);

pdot = -zeta.xp.xlog(p./q);
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gdot = g.x (b— (mu+ (d* (p." (2/3)))+G.*u));

phaseout .dynamics = [pdot gdot];
phaseout.integrand = u;

function output = tumorAntiAngiogenesisEndpoint (input)

pf = input.phase.finalstate(1);
output.objective = pf;

The solution obtained using GPOPS — I using the NLP solver IPOPT with a mesh refinement error
tolerance of 107% is shown in Figs. 6a-6¢c. Note that in this example we have also provided the costate of
the optimal control problem, where the costate is estimated using the Radau orthogonal collocation costate
estimation method described in Refs. 2,3, and
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Figure 6: Solution to Tumor Anti-Angiogenesis Optimal Control Problem Using GPOPS — II with the NLP
Solver SNOPT and a Mesh Refinement Tolerance of 1076.
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6.3 Reusable Launch Vehicle Entry

Consider the following optimal control problem of maximizing the crossrange during the atmospheric entry
of a reusable launch vehicle and taken verbatim from Ref.'” Minimize the cost functional

J = —o(ty)
subject to the dynamic constraints
7 = vsinvy,
i = v €cos ysin ¢
N 7 COS ¢

. ¥ COS 7y COS 1

§ = Lowresy

. Fy .

v = —— — Fysinvy,

m
. Ficoso <Fg v)
yo= —— (="~ cosy,
muv v
1/.) _ Fisino n vcos'ysinwtamqb7
Mo cos y r
and the boundary conditions

r(0) = 79248+ R.m , r(ty) = 24384+ R. m,
0(0) = 0deg , 0(ty) = Free,
#(0) = 0deg , o(ty) = Free,
v(0) = 7803 m/s , o(ty) = T762m[s,
v(0) = —1deg . (ty) = —bdeg,
P(0) = 90 deg , ¥(ty) = Free.

Further details of this problem, including the aerodynamic model,

solving this problem is shown below.

can be found in Ref. 12.

(48)

(49)

(50)

The code for

77777777777 Reusable Launch Vehicle Entry Example —-———————-

o° o

ol

Betts, J. T., Practical Methods for Optimal Control Using

This example is taken verbatim from the following reference:

. __o
S

% Nonlinear Programming, SIAM Press, Philadelphia, 2009. %

%close all

clear all

cilte

cft2m = 0.3048;

cft2km = cft2m/1000;

cslug2kg = 14.5939029;

e Provide Auxiliary Data for Problem —-——————-———————————— %

auxdata.Re = 6371203.92; % Equatorial Radius of Earth (m)
auxdata.S = 249.9091776; % Vehicle Reference Area (m"2)
auxdata.cl = [-0.2070 1.6756]; % Parameters for Lift Coefficient
auxdata.cd = [0.0785 -0.3529 2.0400]; % Parameters for Drag Coefficient
auxdata.b = [0.07854 -0.061592 0.00621408]; % Parameters for Heat Rate Model
auxdata.H = 7254.24; % Density Scale Height (m)

auxdata.al = [-0.20704 0.0292447]; % Parameters for Heat Rate Model
auxdata.rho0 = 1.225570827014494; % Sea Level Atmospheric Density (kg/m”3)
auxdata.mu = 3.986031954093051e14; % Earth Gravitational Parameter (m”~3/s”2)
auxdata.mass = 92079.2525560557; % Vehicle Mass (kqg)
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i Boundary Conditions --————-------------———— %
t0 0;

alt0 = 79248;

rad0 = altO+auxdata.Re;

altf = +24384;

radf = altf+auxdata.Re;

lon0 = 0;

lato = 0;

speed0 = +7802.88;
speedf = +762;

fpal = -1%pi/180;

fpaf = -5%pi/180;

azi0 = +90%pi/180;

azif = -90%pi/180;

e Limits on Variables -—-—-————----------—————— %
tfMin = 0; tfMax = 3000;

radMin = auxdata.Re; radMax = radO;

lonMin = -pi; lonMax = -lonMin;

latMin = -70%pi/180; latMax = -latMin;

speedMin = 10; speedMax = 45000;

fpaMin = -80%pi/180; fpaMax = 80xpi/180;

aziMin = -180%pi/180; aziMax = 180%pi/180;

aoaMin = -90%pi/180; aocoaMax = —-aoaMin;

bankMin = -90xpi/180; bankMax = 1xpi/180;

B Set Up Problem Using Data Provided Above —————————- %

bounds.phase.initialtime.lower = tO0;
bounds.phase.initialtime.upper = tO0;
bounds.phase.finaltime.lower = tfMin;
bounds.phase.finaltime.upper = tfMax;

radGuess, lonGuess, latGuess, speedGuess, fpaGuess, aziGuess];
aoaGuess, bankGuess];

guess.phase.state
guess.phase.control =

bounds.phase.initialstate.lower = [rad0O, lon0O, lat0O, speedO, fpaO, aziO];
bounds.phase.initialstate.upper = [rad0, lon0O, lat0O, speedO, fpaO, aziO];
bounds.phase.state.lower = [radMin, lonMin, latMin, speedMin, fpaMin, aziMin];
bounds.phase.state.upper = [radMax, lonMax, latMax, speedMax, fpaMax, aziMax];
bounds.phase.finalstate.lower = [radf, lonMin, latMin, speedf, fpaf, aziMin];
bounds.phase.finalstate.upper = [radf, lonMax, latMax, speedf, fpaf, aziMax];
bounds.phase.control.lower = [aoaMin, bankMin];
bounds.phase.control.upper = [aocaMax, bankMax];
L Provide Guess of Solution - ————---------------———- %
tGuess [0; 10001;
radGuess = [radO; radf];
lonGuess = [lon0; lonO+10%pi/1801];
latGuess = [lat0O; lat0+10%pi/1801;
speedGuess = [speed0; speedf];
fpaGuess = [fpa0; fpaf];
aziGuess = [azi0; azif];
aocaGuess = [0; 01;
bankGuess = [0; 0];

[

[
guess.phase.time = tGuess;
e Provide Mesh Refinement Method and Initial Mesh - ——————--—--———— %
mesh.method = 'hp-LiuRao-Legendre';

mesh.maxiterations = 2;
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mesh.colpointsmin = 3;

mesh.colpointsmax = 20;

mesh.tolerance = le-7;

e Configure Setup Using the information provided --——-——-—-——- %
setup.name = 'Reusable-Launch-Vehicle-Entry-Problem';
setup.functions.continuous @rlvEntryContinuous;
setup.functions.endpoint @rlvEntryEndpoint;
setup.auxdata auxdata;
setup.bounds bounds;

setup.guess guess;

setup.mesh mesh;
setup.displaylevel = 2;

setup.nlp.solver 'ipopt';
setup.nlp.ipoptoptions.linear_solver 'ma57"';
setup.derivatives.supplier 'adigator';
setup.derivatives.derivativelevel 'second';
setup.scales.method 'automatic-bounds';
setup.method 'RPM-Differentiation’;
e eeeme e Solve Problem Using GPOPS2 ———————————————————— %
output = gpops2 (setup);

function phaseout = rlvEntryContinuous (input)

8 == Extract Each Component of the State —-—————- %

rad = input.phase.state(:,1);

lon = input.phase.state(:,2);

lat = input.phase.state(:,3);

v = input.phase.state(:,4);

fpa = input.phase.state(:,5);

azi = input.phase.state(:,6);

aoa = input.phase.control(:,1);

bank = input.phase.control(:,2);

8 oo Compute the Aerodynamic Quantities --—-————- %

cd0 = input.auxdata.cd (1)

cdl = input.auxdata.cd(2)

cd2 = input.auxdata.cd(3)

cl0 = input.auxdata.cl (1)

cll = input.auxdata.cl (2)

mu = input.auxdata.mu;

rho0 = input.auxdata.rhoO;

H = input.auxdata.H;

S = input.auxdata.S;

mass = input.auxdata.mass;

altitude = rad - input.auxdata.Re;

CD = cdO+cdl*aoca+cd2+aoa. " 2;

rho = rhoO*exp (-altitude/H);
CL = clO+cll*aoa;

q = 0.5%rho.*v."2;

D = g.*S.*CD./mass;

L = g.*S.*CL./mass;
gravity = mu./rad."2;

% —-—-——- Evaluate Right-Hand Side of the Dynamics ---- %
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raddot = v.xsin (fpa);
londot = v.=*cos (fpa).*sin(azi)./(rad.*cos (lat)
latdot = v.*cos (fpa).xcos(azi)./rad;

vdot = -D-gravity.=*sin(fpa);
fpadot = (L.xcos (bank)-cos(fpa).* (gravity-v."2./rad))./v;
azidot = (L.*sin(bank)./cos (fpa)+v."2.*cos (fpa).*sin(azi).*tan(lat)./rad)
phaseout .dynamics = [raddot, londot, latdot, vdot, fpadot, azidot];
function output = rlvEntryEndpoint (input)

Inputs

input.phase (phasenumber) .initialstate —- row

input.phase (phasenumber) .finalstate -- row

( )
( )
input.phase (phasenumber) .initialtime -- scal
( )
( )

o° o° o° o o° o° o° o

input.phase (phasenumber) .finaltime -- scalar
input.phase (phasenumber) .integral -- row
input.parameter -- row

% input.auxdata = auxiliary information

% Output

% output.objective -- scalar

% output.eventgroup (eventnumber) .event —- row

latf = input.phase.finalstate (3);

[

% cost
output.objective = -latf;

)

ar

/v;

This example was solved using GPOPS — II using the NLP solver IPOPT with a mesh refinement tolerance

of 107 and the solution is shown in Figs. 7a—T7f.
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Figure 7: Solution to Reusable Launch Vehicle Entry Problem Using GPOPS — II with the NLP Solver
IPOPT and a Mesh Refinement Tolerance of 1076,
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6.4 Minimum Time-to-Climb of a Supersonic Aircraft

The problem considered in this section is the classical minimum time-to-climb of a supersonic aircraft. The
objective is to determine the minimum-time trajectory and control from take-off to a specified altitude and
speed. This problem was originally stated in the open literature in the work of Ref. 24, but the model used
in this study was taken from Ref. with the exception that a linear extrapolation of the thrust data as
found in Ref. 12 was performed in order to fill in the “missing” data points.

The minimum time-to-climb problem for a supersonic aircraft is posed as follows. Minimize the cost
functional

J =1ty (51)
subject to the dynamic constraints
h = wvsina (52)
Tcosa— D
o = cos o (53)
m
. Tsina+L v I
i= (G e (54)
T
= - 55
golép ( )
and the boundary conditions
h(0) 0 ft (56)
v(0) = 129.3144 m/s (57)
~v(0) = Orad (58)
h(ty) = 19994.88 m (59)
v(ty) = 295.092 ft/s (60)
~v(ty) = Orad (61)

where h is the altitude, v is the speed, « is the flight path angle, m is the vehicle mass, T is the magnitude
of the thrust force, and D is the magnitude of the drag force. It is noted that this example uses table data
obtained from Ref. 24. The MATLAB code that solves the minimum time-to-climb of a supersonic aircraft
is shown below.

e e Minimum Time-to-Climb of a Supersonic Aircraft --———————- %
% This example is taken verbatim from the following reference: %
% Bryson, A. E., Desai, M. N. and Hoffman, W. C., "Energy-State %
% Approximation in Performance Optimization of Supersonic %
$ Aircraft," Journal of Aircraft, Vol. 6, No. 6, November-December, %
% 1969, pp. 481-488. %

clear all
close all
clc

e U.S. 1976 Standard Atmosphere ———————---——————— %
% Format of Data: %
% Column 1: Altitude (m) %

% Column 2: Atmospheric Density (kg/m”3) %
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% Column 3 Speed of Sound (m/s) %
usl976 = [-2000 1.478e+00 3.479e+02
0 1.225e+00 3.403e+02
2000 1.007e+00 3.325e+02
4000 8.193e-01 3.246e+02
6000 6.601le-01 3.165e+02
8000 5.258e-01 3.081le+02
10000 4.135e-01 2.995e+02
12000 3.119e-01 2.951e+02
14000 2.27%e-01 2.951e+02
16000 1.665e-01 2.951e+02
18000 1.216e-01 2.951e+02
20000 8.891e-02 2.951e+02
22000 6.451e-02 2.964e+02
24000 4.694e-02 2.977e+02
26000 3.426e-02 2.991e+02
28000 2.508e-02 3.004e+02
30000 1.841e-02 3.017e+02
32000 1.355e-02 3.030e+02
34000 9.887e-03 3.065e+02
36000 7.257e-03 3.101e+02
38000 5.366e-03 3.137e+02
40000 3.995e-03 3.172e+02
42000 2.995e-03 3.207e+02
44000 2.259e-03 3.241e+02
46000 1.714e-03 3.275e+02
48000 1.317e-03 3.298e+02
50000 1.027e-03 3.298e+02
52000 8.055e-04 3.288e+02
54000 6.389e-04 3.254e+02
56000 5.044e-04 3.220e+02
58000 3.962e-04 3.186e+02
60000 3.096e-04 3.151e+02
62000 2.407e-04 3.115e+02
64000 1.860e-04 3.080e+02
66000 1.429e-04 3.044e+02
68000 1.091e-04 3.007e+02
70000 8.281e-05 2.971e+02
72000 6.236e-05 2.934e+02
74000 4.637e-05 2.907e+02
76000 3.430e-05 2.880e+02
78000 2.523e-05 2.853e+02
80000 1.845e-05 2.825e+02
82000 1.341e-05 2.797e+02
84000 9.690e-06 2.769e+02

86000 6.955e-06 2.741e+027;
B Propulsion Data for Bryson Aircraft -—————-————--——- %

o o

The thrust depends for the aircraft considered by Bryson in 1969
depends upon the Mach number and the altitude. This data is taken
verbatim from the 1969 Journal of Aircraft paper (see reference
above) and is copied for use in this example. The data are stored
in the following variables:

o o° o o° o° o
o° o° o° o° o° o

- Mtab: a vector of values of Mach number

% - alttab: a vector of altitude values %

% - Ttab: is a table of aircraft thrust values %

% After conversion, the altitude given in meters. %

% After conversion, the thrust given in Newtons. %

Mtab [0; 0.2; 0.4; 0.6; 0.8; 1; 1.2; 1.4; 1.6; 1.8];

alttab = 304.8x[0 5 10 15 20 25 30 40 50 701]1;

Ttab = 4448.222%[24.2 24.0 20.3 17.3 14.5 12.2 10.2 5.7 3.4 0.1;
28.0 24.6 21.1 18.1 15.2 12.8 10.7 6.5 3.9 0.2;
28.3 25.2 21.9 18.7 15.9 13.4 11.2 7.3 4.4 0.4;
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30.8 27.2 23.8 20.5 17.3 14.7 12.3 8.1 4.9 0.8;
34.5 30.3 26.6 23.2 19.8 16.8 14.1 9.4 5.6 1.1;
37.9 34.3 30.4 26.8 23.3 19.8 16.8 11.2 6.8 1.4;
36.1 38.0 34.9 31.3 27.3 23.6 20.1 13.4 8.3 1.7;
36.1 36.6 38.5 36.1 31.6 28.1 24.2 16.2 10.0 2.2;
36.1 35.2 42.1 38.7 35.7 32.0 28.1 19.3 11.9 2.9;
36.1 33.8 45.7 41.3 39.8 34.6 31.1 21.7 13.3 3.11;

o Aerodynamic Data for Bryson Aircraft —-—————-———-———- %

% M2 is a vector of Mach number values %

% Clalphatab is a vector of coefficient of 1lift wvalues %

% CDOtab is a vector of zero-lift coefficient of drag values %

% - etatab is a vector of load factors %

M2 = [0 0.4 0.80.91.01.2 1.4 1.6 1.8]1;

Clalphatab = [3.44 3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44];

CDOtab = [0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.0351;

etatab = [0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.9371;

%$———— All Data Required by User Functions is Stored in AUXDATA —-----— %

auxdata.CDdat = CDhdat;

auxdata.CLdat = CLdat;

auxdata.etadat = etadat;

auxdata.M = Mtab;

auxdata.M2 = M2;

auxdata.alt = alttab;

auxdata.T = Ttab;

auxdata.Clalpha = Clalphatab;

auxdata.CDO = CDOtab;

auxdata.eta = etatab;

auxdata.ppCLalpha = polyfit (auxdata.M2,auxdata.Clalpha,8);

auxdata.ppCDO = polyfit (auxdata.M2,auxdata.CDO, 8);

auxdata.ppeta = polyfit (auxdata.M2,auxdata.eta,8);

auxdata.Re = 6378145;

auxdata.mu = 3.9806el4;

auxdata.S = 49.2386;

auxdata.g0 = 9.80665;

auxdata.Isp = 1600;

auxdata.H = 7254.24;

auxdata.rho0 = 1.225;

auxdata.usl976 = usl976;

[aa, mm] = meshgrid(alttab,Mtab);

auxdata.aa = aaj;

auxdata.mm = mm;

e Boundary Conditions ---———-----------—————— %

t0 = 0; % Initial time (sec)

altO = 0; % Initial altitude (meters)

altf = 19994.88; % Final altitude (meters)

speed0 = 129.314; % Initial speed (m/s)

speedf = 295.092; % Final speed (m/s)

fpal = 0; % Initial flight path angle (rad)

fpaf = 0; % Final flight path angle (rad)

massO0O = 19050.864; % Initial mass (kqg)

e Limits on Variables —-—-—-—-———---—-—---——————— %

tfmin = 100; tfmax = 800;

altmin = 0; altmax = 21031.2;
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speedmin = 5; speedmax = 1000;

fpamin = -40%pi/180; fpamax = 40xpi/180;

massmin = 22; massmax = 20410;

alphamin = -pi/4; alphamax = pi/4;

e Set Up Problem Using Data Provided Above —————————- %
bounds.phase.initialtime.lower = tO0;
bounds.phase.initialtime.upper = tO0;
bounds.phase.finaltime.lower = tfmin;
bounds.phase.finaltime.upper = tfmax;
bounds.phase.initialstate.lower = [alt0, speed0O, fpal, massO0];
bounds.phase.initialstate.upper = [alt0, speed0O, fpal, massO0];

bounds.phase.state.upper = [altmax, speedmax, fpamax, massmax];

[
bounds.phase.state.lower = [altmin, speedmin, fpamin, massmin];
[
bounds.phase.finalstate.lower = [altf, speedf, fpaf, massmin];

bounds.phase.finalstate.upper = [altf, speedf, fpaf, massmax];
bounds.phase.control.lower = alphamin;

bounds.phase.control.upper = alphamax;

e Provide Guess of Solution --——-----——--—-——————————-— %

0; 10001;

alt0; altf];
speed0; speedf];
fpal; fpafl;

guess.phase.time

guess.phase.state(:,1)
guess.phase.state(:,
guess.phase.state (:,3)

N
I

guess.phase.state(:,4) = [mass0; mass0];

guess.phase.control = [20; -20]%pi/180;

F—————————— Provide Mesh Refinement Method and Initial Mesh --—————-——————- %
mesh.method = 'hp-LiuRao-Legendre';

mesh.tolerance = le-6;

mesh.colpointsmin = 4;

mesh.colpointsmax = 10;

mesh.sigma = 0.75;

% mesh.colpointsmax = 100;

% mesh.colpoints = 10;

% mesh.fraction =1;

e e Configure Setup Using the information provided -———————- %
setup.name = 'Bryson-Minimum-Time-to-Climb-Problem';
setup.functions.continuous = @brysonMinimumTimeToClimbContinuous;
setup.functions.endpoint = @brysonMinimumTimeToClimbEndpoint;
setup.displaylevel = 2;

setup.nlp.solver = 'ipopt';
setup.nlp.ipoptoptions.linear_solver = 'mab57"';

setup.bounds = bounds;

setup.guess = guess;

setup.mesh = mesh;

setup.auxdata = auxdata;

setup.derivatives.supplier = 'sparseCD';

% setup.derivatives.supplier = 'adigator';
setup.derivatives.derivativelevel = 'second';
setup.derivatives.dependencies = 'sparseNaN';

setup.scales.method = 'automatic-bounds';

setup.method = 'RPM-Differentiation';
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output = gpops2 (setup);

function phaseout = brysonMinimumTimeToClimbContinuous (input)

CONSTANTS = input.auxdata;

usl976 = CONSTANTS.usl976;

Ttab = CONSTANTS.T;

mu = CONSTANTS.mu;

S) = CONSTANTS.S;

g0 = CONSTANTS.g0;

Isp = CONSTANTS.Isp;

Re = CONSTANTS.Re;

X = input.phase(1l) .state;

u = input.phase(l) .control;

h = x(:,1);

v = x(:,2);

fpa = x(:,3);

mass = x(:,4);

alpha =u(:,1);

r = h+Re;

rho = interpl (usl976(:,1),usl976(:,2),h, 'spline');

sos = interpl (usl976(:,1),usl976(:,3),h, 'spline');
Mach = v./sos;

[CDO,Clalpha,etal = brysonMinimumTimeToClimbCompute (Mach, CONSTANTS) ;
Thrust = interp2 (CONSTANTS.aa, CONSTANTS.mm, Ttab, h,Mach, 'spline');
CD = CDO + eta.xClalpha.xalpha.”2;

CL = Clalpha.~*alpha;

q = 0.5.xrho.»*v.x*v;

D = q.*S.*CD;

L = gq.*S.*CL;

hdot = v.*sin(fpa);

vdot = (Thrust.*cos(alpha)-D)./mass — mu.*sin(fpa)./r."2;
fpadot = (Thrust.=*sin(alpha)+L) ./ (mass.*v)+cos (fpa) .x(v./r-mu./(v.xr." 2));
mdot = -Thrust./ (g0.*Isp);

phaseout .dynamics = [hdot, vdot, fpadot, mdot];

% End Function: minimumTimeToClimbContinuous.m %

% Begin Function: DbrysonMinimumTimeToClimbEndpoint.m %

function output = brysonMinimumTimeToClimbEndpoint (input) ;

output.objective = input.phase(l).finaltime;;
% End Function: DbrysonMinimumTimeToClimbEndpoint.m %
% Begin Function: minimumTimeToClimbCompute.m %

function [CD,CL,etal=minimumTimeToClimbCompute (Mach, CONSTANTS)

Chdat = CONSTANTS.CDdat;
CLdat CONSTANTS.CLdat;
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etadat = CONSTANTS.etadat;

ii = find (Mach>0.8);
= find (Mach<0.8);

o\

ii = Mach>0.8;
33 = Mach<0.8;
mpoly = Mach(ii);
CD = zeros(length(Mach),1);

CL = zeros(length(Mach),1);
eta = zeros(length(Mach),1);
if any(ii)

CD(ii) = ppval (CDhdat,mpoly);
CL(ii) = ppval (CLdat,mpoly) ;
eta(ii) = ppval (etadat,mpoly) ;
end
if any(33)
CD(3jj) = 0.013;
CL(Jj) = 3.44;
eta(jj) = 0.54;
end
% End Function: minimumTimeToClimbCompute.m %

The components of the state and the control obtained from running the above GPOPS —II code is
summarized in Figs. 8a-8d.

Table 4: Relative Error Estimate vs. Mesh Refinement Iteration for Minimum Time-to-Climb Problem.

| Mesh Refinement Iteration [ Relative Error Estimate ‘

1 5.776 x 1073
2 2.3717 x 1073
3 3.0679 x 107°
4 6.2216 x 10~°
5 8.861 x 107°
6 2.3224 x 107°
7 1.3708 x 10~°
8 3.8553 x 10°°
9 5.1621 x 107°
10 7.0515 x 10~°
11 2.5598 x 107°
12 1.0775 x 107°
13 7.8122 x 10~
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Figure 8: Solution to Minimum Time-to-Climb Problem Using GPOPS — II with the NLP Solver SNOPT
and a Mesh Refinement Tolerance of 1079,
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Dynamic Soaring Problem

The following optimal control problem considers optimizing the motion of a hang glider in the presence
of known wind force. The probem was originally described in Ref.'® and the problem considered here is
identical to that of Ref.'® The objective is to minimize the average wind gradient slope (3, that is, minimize

J =3 (62)
subject to the hang glider dynamics
* = wcosysinyy+W, , mo = —D—mgsin*y—meqosvsim/J
Y = wvcosycosy ,  muYy = Lcoso —mgcosy+ mW, sinvysin, (63)
h = wsiny , mvcosyy = Lsino—mW,cosvy
and the boundary conditions
(2(0),4(0), h(0)) = (a(ty),y(ty),h(ts)) = (0,0,0), (64)
(v(ts) —v(0),7(ty) —~(0),¢(tr) + 2m —(0)) = (0,0,0),

where W, is the wind component along the East direction, m is the glider mass, v is the air-relative speed,
1 is the azimuth angle (measured clockwise from the North), « is the air-relative flight path angle, h is the
altitude, (x,y) are (East, North) position, o is the glider bank angle, D is the drag force, and L is the lift
force. The drag and lift forces are computed using a standard drag polar aerodynamic model

D= ¢SCp,
L= qSCy, (65)
where ¢ = pv?/2 is the dynamic pressure, S is the vehicle reference area, Cp = Cpg+ KC3 is the coefficient
of drag, and C7, is the coefficient of lift (where 0 < C, < Cf max). The constants for this problem ar taken
verbatim from Ref. and are given as Cpg = 0.00873, K = 0.045, and Cf, max = 1.5. Finally, it is noted
that Cf, and o are the controls.

This example was posed in English units, but was solved using the automatic scaling procedure in
GPOPS — IT with the NLP solver IPOPT using second sparse finite-difference approximations for the NLP
derivatives and with a mesh refinement tolerance of 10=7. The code used to solve this problem is shown
below and the solution to this problem is shown in Fig. 9.

o Dynamic Soaring Problem -——-———-——-—-——————————————————=%
% This example is taken from the following reference: %
% Zhao, Y. J., "Optimal Pattern of Glider Dynamic Soaring," Optimal %

Control Applications and Methods, Vol. 25, 2004, pp. 67-89. %

clc

B Provide Auxiliary Data for Problem -—-———-------——————- %
auxdata.rho = 0.002378;

auxdata.CDO0 = 0.00873;

auxdata.K = 0.045;

auxdata.g = 32.2;

auxdata.m = 5.6;

auxdata.S = 45.09703;

auxdata.mu = 3.9806el4;

auxdata.mrauxdata.g/auxdata.S;

(1/ (4*auxdata.Krauxdata.CD0)) "0.5;
0;

_2,-

5;

auxdata.mgos
auxdata.Emax
auxdata.W0

auxdata.lmin
auxdata.lmax
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e Boundary Conditions ---————-----------————— %

t0 = 0; x0 = 0; y0 = 0; z0 = 0; vO = 100;

e Limits on Variables -—————----------—--———— %

tfmin iLg tfmax = 30;

xmin = -1000; xmax = +1000;

ymin = -1000; ymax = +1000;

zmin = 0; zmax = +1000;

vmin = +10; vmax = +350;

gammamin = -75%pi/180; gammamax = 75xpi/180;

psimin = -3%pi; psimax = +pi/2;

betamin = 0.005; betamax = 0.15;

CLmin = -0.5; CLmax = 1.5;

Phimin = -75/180xpi; Phimax = 75/180xpi;

oo Set Up Problem Using Data Provided Above —-—-———————— %
bounds.phase.initialtime.lower = tO0;

bounds.phase.initialtime.upper = tO0;

bounds.phase.finaltime.lower = tfmin;

bounds.phase.finaltime.upper = tfmax;

bounds.phase.initialstate.lower = [x0, y0, z0, vmin, gammamin, psimin];
bounds.phase.initialstate.upper = [x0, y0, z0, vmax, gammamax, psimax];
bounds.phase.state.lower = [xmin, ymin, zmin, vmin, gammamin, psimin];
bounds.phase.state.upper = [xmax, ymax, zmax, vmax, gammamax, psimax];
bounds.phase.finalstate.lower = [x0, y0, z0, vmin, gammamin, psimin];
bounds.phase.finalstate.upper = [x0, yO0, z0, vmax, gammamax, psimax];
bounds.phase.control.lower = [CLmin, Phimin];
bounds.phase.control.upper = [CLmax, Phimax];

bounds.phase.path.lower = auxdata.lmin;

bounds.phase.path.upper = auxdata.lmax;

bounds.eventgroup (1) .lower = [0, 0, -2xpil;

bounds.eventgroup (1) .upper = [0, 0, -2%pi];

bounds.parameter.lower = betamin;

bounds.parameter.upper = betamax;

g——— Provide Guess of Solution --——--—--——--———————————— %
N = 100;

CLO = CLmax;

tGuess = linspace(0,24,N)."';

xguess = 500%cos (2+xpi*tGuess/24)-500;

yguess = 300%sin (2+xpixtGuess/24);

zguess = —400*cos (2«pixtGuess/24)+400;

vguess = 0.8%v0x (1.5+cos (2+«pi*tGuess/24));
gammaguess = pi/6xsin (2xpixtGuess/24);

psiguess = -1-tGuess/4;

CLguess = CLO*ones (N,1)/3;

phiguess = -ones (N, 1);

betaguess = 0.08;

guess.phase.time = tGuess;

guess.phase.state = [xguess, yguess, zguess, vguess, gammaguess, psiguess];
guess.phase.control = [CLguess, phiguess];

guess.parameter = [betaguess];

e Provide Mesh Refinement Method and Initial Mesh - ——————--—--———— %

mesh.maxiterations
mesh.method

= 10;
= 'hp-LiuRao';
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mesh.tolerance = le-6;

e Configure Setup Using the information provided --——-——--——- %
setup.name = 'Dynamic-Soaring-Problem’;
setup.functions.continuous = @dynamicSoaringContinuous;
setup.functions.endpoint = @dynamicSoaringEndpoint;
setup.nlp.solver = 'ipopt';
setup.nlp.ipoptoptions.linear_solver = 'mab57"';

setup.displaylevel = 2;

setup.auxdata = auxdata;

setup.bounds = bounds;

setup.guess = guess;

setup.mesh = mesh;
setup.derivatives.supplier = 'adigator';
setup.derivatives.derivativelevel = 'second';
setup.scales.method = 'automatic-bounds';
setup.method = 'RPM-Differentiation';
oo Solve Problem Using GPOPS-II-—-————————————————— %

output = gpops2 (setup);
solution = output.result.solution;

function phaseout = dynamicSoaringContinuous (input)
t = input.phase(l) .time;
s = input.phase (1) .state;
u = input.phase(1l) .control;
P = input.phase(l) .parameter;
x = s(:,1);
y = s(:,2);
z = s(:,3);
= s(:,4);
gamma = s(:,5);
psi = s(:,6);
CL =u(:,1);
phi =u(:,2);
beta =p(:,1);
singamma = sin(gamma) ;
cosgamma = cos (gamma) ;
sinpsi = sin(psi);
cospsi = cos (psi);
sinphi = sin(phi);
cosphi = cos (phi);
rho = input.auxdata.rho;
S = input.auxdata.S;
CDO = input.auxdata.CDO;
K = input.auxdata.K;
g = input.auxdata.g;
m = input.auxdata.m;
WO = input.auxdata.W0;
WX = (beta.*z+W0);
DWxDt = beta.#*Vv.+singamma;
vcosgamma = v.*cosgamma;
DWxDtsinpsi = DWxDt.*sinpsi;
xdot = vcosgamma.xsinpsi+wx;
ydot = vcosgamma.*Ccospsi;

zdot = v.*singamma;
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terml = rhoxS/2/m;

term2 = 1;

term3 = gxterm2;

CLsqg = CL."2;

vsqg =v."2;

vdot = —terml* (CDO+K*CLsq) . *vsg- (term3) *singamma-term2+*DWxDtsinpsi.*cosgamma;
gammadot = terml+CL.xv.xcosphi- (term3)xcosgamma./v+term2«DWxDtsinpsi.+singamma./v;
psidot = (terml*CL.*v.*sinphi-term2+DWxDt.*cospsi./v) ./cosgamma;

ngconstant = (0.5xrho*S/m/q) ;

ng = ngconstant.*CL.xv."2;

phaseout .dynamics = [xdot, ydot, zdot, vdot, gammadot, psidot];

phaseout.path = ng;

function output = dynamicSoaringEndpoint (input)

t0 = input.phase(l) .initialtime;

tf = input.phase(l) .finaltime;

x0 = input.phase(l) .initialstate;

xf = input.phase(l) .finalstate;

beta = input.parameter;

output.eventgroup (l) .event = [xf(4)-x0(4), xf(5)-x0(5), xf(6)-x0(6)];

output.objective = 7xbeta;
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Figure 9: Solution to Dynamic Soaring Problem Using GPOPS — II with the NLP Solver IPOPT and a Mesh
Refinement Tolerance of 1076.
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6.5 Two-Strain Tuberculosis Optimal Control Problem

Quoting from Ref. 19, “[Past] models [for Tuberculosis (TB)] did not account for time dependent control
strategies. . .In this article we consider (time dependent) optimal control strategies associated with case
holding and case finding based on a two-strain TB model...Our objective functional balances the effect of
minimizing the cases of latent and infectious drug-resistant TB and minimizing the cost of implementing the
control treatments.” The two-strain tuberculosis optimal control problem considered in Ref. 19 is formulated
as follows. Minimize the objective functional

ty 1
J= / {LQ + I+ 5311@ + Bou3 | dt (66)
0

subject to the dynamic constraints

S(t) = A-piShY sl s(),
Ll(t) = ﬁls(t)hT(t) — (,u + kl)Ll(t) — U1T1L1(f)
. + (1= ua()prali(t) + BT () — 5Ly (1) 22,
L) = kili(t) — (p+di)1i(t) — r2Li (),
Lo(t) = (1 —wugz(t)qrala(t) — (u+ k2)La(t) (67)
O+ B+ L)+ T() =R,
I(t) = kaLa(t) — (p+ d2)I2(t),
@) = w(®)rili(t) = (1 =1 —=u2t))(p+ q@)r2li(t)
— BT() ™ — BT (6) 57 — T (1),
0 = S+I1+L+Ly+I+T—N,
and the initial conditions
(5(0), L1(0), I(0), L2(0), I5(0),T(0)) = (So, L10, L10, L20, 120, 1), (68)

where etails of the model can be found in Ref. (and are also provided in the GPOPS — II code shown
below). The optimal control problem of Egs. (66)—(68) is solved using GPOPS — II with the NLP solver
SNOPT with a mesh refinement accuracy tolerance of 107%. The code used to solve this example is given
below and the solution is shown in Figs. 10 and 11.

B Two-Strain Tuberculosis Model —-——————---—---—-——-%
% This problem is taken from the following reference: %
% Betts, J. T., "Practical Methods for Optimal Control and %
% Estimation Using Nonlinear Programming," SIAM Press, Philadelphia, %
% PA, 2009. %

clear all
close all
cillG

auxdata.betal = 1

auxdata.beta2 = 13;
auxdata.mu 1

auxdata.dl
auxdata.d2
auxdata.kl
auxdata.k2
auxdata.rl
auxdata.r?2
auxdata.p
auxdata.q
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auxdata.Npop = 30000;

auxdata.betas = 0.029;

auxdata.Bl = 50;

auxdata.B2 = 500;

auxdata.lam = auxdata.muxauxdata.Npop;
auxdata.m0 = 1;

auxdata.dm = 0.0749;

o= Set up Bounds for Optimal Control Problem -———-———-—————- %
t0 0;

tf = 5;

S0 = 76+auxdata.Npop/120;

TO auxdata.Npop/120;
L10 = 36*auxdata.Npop/120;
L20 = 2xauxdata.Npop/120;
I10 = 4xauxdata.Npop/120;
I20 = l*auxdata.Npop/120;
Nmin = 0;

Nmax = 30000;

ulmin = 0.05;

ulmax = 0.95;

u2min = 0.05;

uZ2max = 0.95;

bounds.phase.initialstate.lower = [S0, TO, L10, L20, I10, I20];
bounds.phase.initialstate.upper = [SO, TO, L10, L20, I10, I20];
bounds.phase.state.lower = [Nmin, Nmin, Nmin, Nmin, Nmin, Nmin];
bounds.phase.state.upper = [Nmax, Nmax, Nmax, Nmax, Nmax, Nmax];
bounds.phase.finalstate.lower = [Nmin, Nmin, Nmin, Nmin, Nmin, Nmin];
bounds.phase.finalstate.upper = [Nmax, Nmax, Nmax, Nmax, Nmax, Nmax];
bounds.phase.control.lower = [ulmin, u2min];
bounds.phase.control.upper = [ulmax, uZ2max];
bounds.phase.initialtime.lower = tO0;

bounds.phase.initialtime.upper = tO0;

bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;

bounds.phase.integral.lower = [0];

bounds.phase.integral.upper = [10000];

bounds.phase.path.lower = [0];

bounds.phase.path.upper = [0];

B Provide an Initial Guess of the Solution -———---—————— %
timeGuess = [t0; tf];

SGuess = [S0; S07;

TGuess = [TO; sO0];

L1Guess = [L10; L10];

L2Guess = [L20; L201];

I1Guess = [I10; I10];

I2Guess = [I20; 1I20];

ulGuess = [0.95; 0.95];

u2Guess = [0.95; 0.95];

guess.phase.time = [timeGuess];

guess.phase.state = [SGuess, TGuess, LlGuess, L2Guess, I1lGuess, I2Guess];
guess.phase.control = [ulGuess, u2Guess];

guess.phase.integral = 6000;

B Provide an Initial Mesh for the Solution --———---————- %
mesh.method = 'hp-LiuRao-Legendre';

mesh.tolerance = le-6;

mesh.maxiterations = 10;

mesh.colpointsmin = 3;
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mesh.colpointsmax = 10;

N = 10;

mesh.phase.colpoints = 4%ones(1,N);

mesh.phase.fraction = ones (1,N) /N;

setup.name = 'Tuberculosis-Optimal-Control-Problem';
setup.functions.continuous = @tuberculosisContinuous;
setup.functions.endpoint = (@tuberculosisEndpoint;
setup.displaylevel = 2;

setup.auxdata = auxdata;

setup.bounds = bounds;

setup.guess = guess;

setup.mesh = mesh;

setup.nlp.solver = 'ipopt';
setup.derivatives.supplier = 'adigator';
setup.derivatives.derivativelevel = 'second';

setup.scales.method = 'automatic-bounds';

setup.method = 'RPM-Differentiation';

e Solve Problem with GPOPS2 and Extract Solution —-————-————- %

function phaseout = tuberculosisContinuous (input)

betal = input.auxdata.betal;
beta2 = input.auxdata.beta2;
mu = input.auxdata.mu;

dl = input.auxdata.dl;

d2 = input.auxdata.d2;

k1 = input.auxdata.kl;

k2 = input.auxdata.k2;

rl = input.auxdata.rl;

r2 = input.auxdata.r2;

p = input.auxdata.p;

g = input.auxdata.q;

Npop = input.auxdata.Npop;
betas = input.auxdata.betas;
Bl = input.auxdata.Bl;

B2 = input.auxdata.B2;

lam = input.auxdata.lam;

S = input.phase.state(:,1);
T = input.phase.state(:,2)
L1l = input.phase.state(:,3)
L2 = input.phase.state(:,4);
Il = input.phase.state(:,5)
I2 = input.phase.state(:,6)

ul = input.phase.control(:,1);
u2 = input.phase.control(:,2);

dS = lam-(betal.*S.*xIl+betas.*S.*I2)./Npop-mu.x*S;

dT = ul.xrl.*«Ll-mu.+T+(1-(1-u2).*(p+qg)) . r2.+xI1-(beta2.+xT.+xIl+betas.*T.*I2)./Npop;

dLl = (betal.xS.*Il+beta2.*T.+xIl-betas.*L1l.*I2)./Npop...
—(mu+kl) .*Ll-ul.*rl.*L1+(1-u2).*p.*r2.%I1;

dL2 = (1-u2).xg.*r2.xI1-(mu+k2) .*L2+betas.* (S+L1+T) .*xI2./Npop;

dIl = kl.*Ll-(mu+dl) .*I1-r2.%I1;

dI2 = k2.*L2- (mu+d2) .*I2;

phaseout .dynamics = [dS, dT, dLl, dL2, dIl, dI2];
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phaseout.path = S + T + L1 + L2 + I1 + I2 - Npop;

phaseout.integrand = L2 + I2 + Bl./2.xul.”2 + B2./2.*u2.

% End Function: tuberculosisContinuous.m %
% Begin Function: tuberculosisEndpoint.m %
function output = tuberculosisEndpoint (input)
output.objective = input.phase.integral;
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Figure 10: Optimal State for Tuberculosis Optimal Control Problem Using GPOPS — II with the NLP Solver
SNOPT and a Mesh Refinement Tolerance of 1076,
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(a) u1(t) vs. t. (b) uz(t) vs. t.

Figure 11: Optimal Control for Tuberculosis Optimal Control Problem Using GPOPS — II with the NLP
Solver SNOPT and a Mesh Refinement Tolerance of 1076.
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Concluding Remarks

While the authors have put for the effort to make GPOPS — II a user-friendly software, it is important to un-
derstand several aspects of computational optimal control in order to make GPOPS — II easier to use. First,
it is highly recommended that the user scale a problem manually using insight from the physics/mathematics
of the problem because the automatic scaling procedure is by no means foolproof. Second, the particular
parameterization of a problem can make all the difference with regard to obtaining a solution in a reliable
manner. Finally, even if the NLP solver returns the result that the optimality conditions have been satisfied,
it is important to verify the solution. In short, a great deal of time in solving optimal control problems is
spent in formulation and analysis.
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