Supersonic Aircraft Climb Problem

The minimum time-to-climb of a supersonic aircraft optimal control problem is stated as follows. Minimize the cost functional $$J=t_f$$ subject to the dynamic constraints $$\begin{array}{lcl}\dot{h}(t) & = & v(t)\sin\alpha(t), \\ \dot{v}(t) & = &\displaystyle \frac{T\cos\alpha(t)-D}{m(t)}, \\ \dot{\gamma}(t) & = & \displaystyle \frac{T\sin\alpha(t)+L}{m(t)v(t)} + \displaystyle\left(\frac{v(t)}{r(t)} - \frac{\mu}{v(t)r^2(t)}\right)\cos\gamma(t), \\ \dot{m}(t) & = &\displaystyle -\frac{T}{g_0 I_{sp}}\end{array}$$ and the boundary conditions $$\begin{array}{lclclcl} h(0) & = & 0~\textrm{m} & , & h(t_f) & = & 19994~\textrm{m}, \\ v(0) & = & 129.314~\textrm{m}\cdot\textrm{s}^{-1} & , & v(t_f) & = & 295.092~\textrm{m}\cdot\textrm{s}^{-1}, \\ \gamma(0) & = & 0~\textrm{rad} & , & \gamma(t_f) & = & 0~\textrm{rad}. \end{array}$$ The solution to the minimum time-to-climb of a supersonic aircraft optimal control problem using GPOPS-II is shown in the figures below.      Image Courtesy of the United State Air Force. URL: http://www.af.mil/shared/media/photodb/photos/110408-F-HA566-582.JPG. Used with Permission.